••••• login ELINGUE Contatti: Tel. 02-36553040
              Email:
   

Selettore risorse


     IL Metodo  |  Grammatica  |  ESERCIZI SERIE 1 - 2 - 3 | Inglese con noi  |  Multiblog  |  INSEGNARE AGLI ADULTI  |  INSEGNARE AI BAMBINI  |  AudioBooks  |  RISORSE SFiziosE  |  Articoli  |  Tips  | testi pAralleli  |  VIDEO SOTTOTITOLATI

   AREA SHOP  RIVISTA ENGLISH4LIFE  | CORS0 20 ORE DI INGLESE |  CORSO 20 ORE DI SPAGNOLO | CORSO 20 ORE DI TEDESCO  | CORSO 20 ORE DI FRANCESE  | CORSO 20 ORE DI RUSSO 


 

WIKIBOOKS
DISPONIBILI
•••••••••

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. AAAA battery
  2. AAA battery
  3. AA battery
  4. A battery
  5. Absorbent glass mat
  6. Alessandro Volta
  7. Alkaline battery
  8. Alkaline fuel cell
  9. Aluminium battery
  10. Ampere
  11. Atomic battery
  12. Backup battery
  13. Baghdad Battery
  14. Batteries
  15. Battery charger
  16. B battery
  17. Bernard S. Baker
  18. Beta-alumina solid electrolyte
  19. Betavoltaics
  20. Bio-nano generator
  21. Blue energy
  22. Bunsen cell
  23. Car battery
  24. C battery
  25. Clark cell
  26. Concentration cell
  27. Coulomb
  28. 2CR5
  29. Daniell cell
  30. Direct borohydride fuel cell
  31. Direct-ethanol fuel cell
  32. Direct methanol fuel cell
  33. Dry cell
  34. Dry pile
  35. Duracell
  36. Duracell Bunny
  37. Earth battery
  38. Electric charge
  39. Electric current
  40. Electricity
  41. Electrochemical cell
  42. Electrochemical potential
  43. Electro-galvanic fuel cell
  44. Electrolysis
  45. Electrolyte
  46. Electrolytic cell
  47. Electromagnetism
  48. Electromotive force
  49. Energizer Bunny
  50. Energy
  51. Energy density
  52. Energy storage
  53. Flashlight
  54. Float charging
  55. Flow Battery
  56. Formic acid fuel cell
  57. Fuel cell
  58. Fuel cell bus trial
  59. Galvanic cell
  60. Gel battery
  61. Grove cell
  62. Half cell
  63. History of the battery
  64. Hybrid vehicle
  65. Lead-acid battery
  66. Leclanché cell
  67. Lemon battery
  68. List of battery sizes
  69. List of battery types
  70. List of fuel cell vehicles
  71. Lithium battery
  72. Lithium ion batteries
  73. Lithium iron phosphate battery
  74. Lithium polymer cell
  75. LR44 battery
  76. Luigi Galvani
  77. Manganese dioxide
  78. Memory effect
  79. Mercury battery
  80. Metal hydride fuel cell
  81. Methane reformer
  82. Methanol reformer
  83. Michael Faraday
  84. Microbial fuel cell
  85. Molten carbonate fuel cell
  86. Molten salt battery
  87. Nickel-cadmium battery
  88. Nickel-iron battery
  89. Nickel metal hydride
  90. Nickel-zinc battery
  91. Open-circuit voltage
  92. Optoelectric nuclear battery
  93. Organic radical battery
  94. Oxyride battery
  95. Panasonic EV Energy Co
  96. Peukert's law
  97. Phosphoric acid fuel cell
  98. Photoelectrochemical cell
  99. Polymer-based battery
  100. Power density
  101. Power management
  102. Power outage
  103. PP3 battery
  104. Primary cell
  105. Prius
  106. Proton exchange membrane
  107. Proton exchange membrane fuel cell
  108. Protonic ceramic fuel cell
  109. Radioisotope piezoelectric generator
  110. Ragone chart
  111. RCR-V3
  112. Rechargeable alkaline battery
  113. Reverse charging
  114. Reversible fuel cell
  115. Searchlight
  116. Secondary cell
  117. Short circuit
  118. Silver-oxide battery
  119. Smart Battery Data
  120. Smart battery system
  121. Sodium-sulfur battery
  122. Solid oxide fuel cell
  123. Super iron battery
  124. Thermionic converter
  125. Trickle charging
  126. Vanadium redox battery
  127. Volt
  128. Voltage
  129. Voltaic pile
  130. Watch battery
  131. Water-activated battery
  132. Weston cell
  133. Wet cell
  134. Zinc-air battery
  135. Zinc-bromine flow battery
  136. Zinc-carbon battery
 



BATTERIES
This article is from:
http://en.wikipedia.org/wiki/History_of_the_battery

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

History of the battery

From Wikipedia, the free encyclopedia

 
Volta's own illustrations of his Crown of Cups and Voltaic Pile, the first batteries.
Volta's own illustrations of his Crown of Cups and Voltaic Pile, the first batteries.

The first battery was invented in 1800 by Alessandro Volta, but although it was a great sensation in scientific circles, it was too crude and underperforming for serious practical use. Later batteries, starting with John Frederic Daniell's wet cell in 1836, provided more reliable currents and were adopted by industry for use in stationary devices, particularly in telegraph networks where, in the days before electricital distribution networks, they were the only practical source of electricity.[1] These so-called wet cells used liquid electrolytes, and were thus prone to leaks and spillage if not handled correctly. Some, like the gravity cell, could only function in a certain orientation. Many used glass jars to hold their components, which made them fragile. These practical flaws made them unsuitable for portable appliances. It was only with the invention of dry cell batteries—which solved the aformentioned flaws of wet cells by replacing the liquid electrolyte with a paste—near the end of the 19th century that portable electrical appliances finally took off.

Etymology

A Leyden jar, a form of capacitor,not an electrochemical cell.
A Leyden jar, a form of capacitor,not an electrochemical cell.
A "battery" of Leyden jars.
A "battery" of Leyden jars.

In the modern sense of the term, a battery is a device that provides a current by means of an electrochemical reaction, wherein electrons are transferred from one chemical to another. However, the original usage of the term referred not to an electrochemical cell but to a set of linked Leyden jars, which, in the 18th century were used by scientists as a means of storing charge. Leyden jars were the first capacitors, and basically consisted of a glass jar whose inner and outer surfaces were coated with metal foil, and had an electrode running through its center. They could be charged with a static generator, and discharged by touching a conductor to its electrode. Scientists could obtain stronger discharges by linking the electrodes of multiple jars together. It was Benjamin Franklin who, in 1748, first used the word "battery" to describe a similar assembly of glass plates with lead sheets pasted on either surface.[2]

Possible ancient batteries

Around 1936, archaeologists uncovered in a village near Baghdad a set of terracotta jars which each contained a rolled-up sheet of copper which housed an iron rod. Scientists believe that this may have been an ancient galvanic cell (roughly 2,000 years old, though its age is still debated), and dubbed them the "Baghdad Batteries". It is believed a common food acid, such as lemon juice or vinegar, served as an electrolyte. Modern replicas have successfully produced currents, lending credence to this hypothesis. It is possible these jars were used for electroplating, or even to produce mild electric shocks as a source of religious experience. Although these may qualify as the first batteries, it is thought that the ancient Persians or possibly Assyrians who made them did not understand electrical theory. In any case, the knowledge of these pots was lost to history and did not influence the "reinvention" of the battery in the 19th century.

 

1800 - The Voltaic Pile

A zinc-copper Voltaic Pile.
A zinc-copper Voltaic Pile.
A Voltaic Pile on display in the Tempio Voltiano
A Voltaic Pile on display in the Tempio Voltiano

In 1780, Luigi Galvani was dissecting a frog affixed to a brass hook. When he touched its leg with his iron scalpel, the leg twitched. Galvani believed the energy that drove this contraction came from the leg itself, and called it "animal electricity".

However, Alessandro Volta, a friend and fellow scientist, disagreed, believing this phenomenon was actually caused by two different metals being joined together by a moist intermediary, and began experimenting to test his hypothesis. In 1800 Volta invented the first true battery which came to be known as the Voltaic Pile. The Voltaic Pile consisted of pairs of copper and zinc discs piled on top of each other, separated by a layer of cloth or cardboard soaked in brine (i.e. the electrolyte). Unlike the Leyden jar, the Voltaic Pile produced a continuous and stable current, and lost little charge over time when not in use, though his early models could not produce a voltage strong enough to produce sparks.[3] He experimented with various metals and found that zinc and silver gave the best results.

Volta believed the current was the result of two different materials simply touching each other—an obsolete scientific theory known as contact tension—and not the result of chemical reactions. Consequently, he regarded the corrosion of the zinc plates as an unrelated flaw that could perhaps be fixed by changing the materials somehow. However, no scientist ever succeeded in preventing this corrosion. In fact, it was observed that the corrosion was faster when a higher current was drawn. This suggested that the corrosion was actually integral the battery's ability to produce a current. This, in part, led to the rejection of contact tension theory in favor of electrochemical theory.

The trough battery, which was basically a Voltaic Pile laid down to prevent electrolyte leakage.
The trough battery, which was basically a Voltaic Pile laid down to prevent electrolyte leakage.

Volta's original pile models had some technical flaws, one of them involving the electrolyte leaking and causing short-circuits due to the weight of the discs compressing the brine-soaked cloth. An Englishman named William Cruickshank solved this problem by laying the elements in a box instead of piling them in a stack. This was known as the trough battery.[4] Volta himself invented a variant which consisted of a chain of cups filled with a salt solution, linked together by metallic arcs dipped into the liquid. This was known as the Crown of Cups. These arcs were made of two different metals (eg zinc and copper) soldered together. This model also proved to be more efficient than his original piles,[5] though it didn't prove as popular.

Another problem with Volta's batteries was short battery life (an hour's worth at best), which was caused by two phenomena. The first was that the current produced electrolysed the electrolyte solution, resulting in a film of hydrogen bubbles forming on the copper, which steadily increased the internal resistance of the battery (This effect, called polarization, is counteracted in modern cells by aditional measures). The other was a phenomenon called local action, wherein minute short-circuits would form around impurities in the zinc, causing the zinc to degrade. The latter problem was solved in 1835 by William Sturgeon, who found that mixing some mercury into the zinc eliminated the local action.[1]

Despite its flaws, Volta's batteries provided a steadier current than Leyden jars, and made possible many new experiments and discoveries, such as the first electrolysis of water by Anthony Carlisle and William Nicholson.

 

1836 - The Daniell cell

Schematic representation of Daniell's original cell.
Schematic representation of Daniell's original cell.

A British chemist named John Frederic Daniell searched for a way to eliminate the hydrogen bubble problem found in the Voltaic Pile, and his solution was to use a second electrolyte to consume the hydrogen produced by the first. In 1836, he invented the Daniell cell, which consisted of a copper pot filled with a copper sulphate solution, in which was immersed an unglazed earthenware container filled with sulphuric acid, in which was immersed a zinc electrode. The earthenware barrier was porous, and allowed ions to pass through but kept the solutions from mixing. Without this barrier, when no current was drawn the copper ions would drift to the zinc anode and undergo reduction without producing a current, effectively destroying the battery's life.[6] After a while copper buildup would block the pores and cut short the battery's life. The Daniel cell provided a longer and more reliable current than the Voltaic cell because the electrolyte desposited copper (a conductor) rather than hydrogen (an insulator) on the cathode. It was also safer and less corrosive. It had an operating voltage of roughly 1.1 volts. It saw widespread use in telegraph networks until it was supplanted by the Leclanché cell in the late 1860s.[1]

 

1844 - The Grove cell

The Grove cell was invented by William Robert Grove in 1844. It consisted of a zinc anode dipped in sulphuric acid and a platinum cathode dipped in nitric acid, separated by porous earthenware. The Grove cell provided a high current and nearly twice the voltage of the Daniell cell, which made it the favored cell of the American telegraph networks for a time. However, it gave off poisonous nitric oxide fumes when operated.[1] The voltage also dropped sharply as the charge diminished, which became a liability as telegraph networks grew more complex. Platinum was also very expensive. The Grove cell was replaced by the cheaper, safer and better performing gravity cell in the 1860s.

 

1859 - The lead-acid cell: the first rechargeable battery

19th-century illustration of Planté's original lead-acid cell.
19th-century illustration of Planté's original lead-acid cell.

Up to this point, all existing batteries would be permanently drained when all their chemical reactions were spent. In 1859, Gaston Planté invented the lead-acid battery, the first ever battery that could be recharged by passing a reverse current through it. A lead acid cell consists of a lead anode and a lead oxide cathode immersed in sulphuric acid. Both electrodes react with the acid to produce lead sulphate, but the reaction at the lead anode releases electrons whilst the reaction at the lead oxide consumes them, thus producing a current. These chemical reactions can be reversed by passing a reverse current through the battery, thereby recharging it.

Planté's first model consisted of two lead sheets separated by rubber strips and rolled into a spiral.[7] His batteries were first used to power the lights in train carriages while stopped at a station. In 1881, Camille Faure invented an improved version that consisted of a lead grid lattice into which a lead oxide paste was pressed, forming a plate. Multiple plates could be stacked for greater performance. This design was easier to mass-produce.

Compared to other batteries, Planté's was rather heavy and bulky for the amount of energy it could hold. However, it could produced remarkably large currents in surges. It also had very low internal resistance, meaning a single battery could be used to power multiple circuits.[1]

The lead-acid battery is still used today in automobiles and other applications where weight isn't a big factor. The basic principle has not changed since 1859, though in the 1970s a variant was developed that used an gel electrolyte of a liquid, allowing the battery to be used in different position without failure or leakage.

Today cells are classified as "primary" if they produce a current only until their chemical reactants are exhausted, and "secondary" if the chemical reactions can be reveresed by recharging the cell. The lead-acid cell was the first "secondary" cell.

 

1860s - The gravity cell

A 1919 illustration of a gravity cell, also known as a crowfoot cell due to distinctive shape of the electrnodes.
A 1919 illustration of a gravity cell, also known as a crowfoot cell due to distinctive shape of the electrnodes.

Sometime during the 1860s, a Frenchman by the name of Callaud invented a variant of the Daniell cell called the gravity cell.[1] This simpler version dispensed with the porous barrier. This reduced the internal resistance of the system and thus the battery yielded a stronger current. It quickly became the battery of choice for the American and British telegraph networks, and was used right up until the 1950s.[8] In the telegraph industry, this battery was often assembled on site by the telegraph workers themselves, and when it ran down it could be renewed by replacing the consumed components.[9]

The gravity cell consisted of a glass jar, in which a copper cathode sat on the bottom and a zinc anode was suspended beneath the rim (the shape of the electrodes vaguely resemble the foot of a crow, and so these were sometimes known as crowfoot cells). Copper sulphate crystals would be scattered around the cathode and then the jar would be filled with distilled water. As the current was drawn, a layer of zinc sulphate solution would form at the top around the anode. This top layer was kept separate from the bottom copper sulphate layer by its lower density and by the polarity of the cell.

The zinc sulphate layer was clear in contrast to the deep blue copper sulphate layer, which allowed a technician to measure the battery life with a glance. On the other hand, this setup meant battery could only be used in a stationary appliance, else the solutions would mix or spill. Another disadvantage was that a current had to be continually drawn to keep the two solutions from mixing by diffusion, so it was unsuitable for intermittent use.

 

1866 - The Leclanché cell

A 1912 illustration of a Leclanché cell.
A 1912 illustration of a Leclanché cell.

In 1866, Georges Leclanché invented a battery that consisted of a zinc anode and a manganese dioxide cathode wrapped in a porous material, dipped in a jar of ammonium chloride solution. The manganese dioxide cathode had a little carbon mixed into it as well, which improved electrolyte conductivity and absorption.[10] It provide a voltage of 1.4 to 1.6 volts.[1] This cell achieved very quick success in telegraphy, signalling and electric bell work. It was used to power early telephones—usually from an adjacent wooden box affixed to the wall—before telephones could draw power from the line itself. It couldn't provide a sustained current for very long. In lengthy conversations the battery would run down rendering the conversation inaudible.[11] This was because certain chemical reactions in the cell increased the internal resistance and thus lowered the voltage. These reactions reversed themselves when the battery was left idle, so it was only good for intermittent use.[1]

 

1887 - The zinc-carbon cell: the first dry cell

In 1887 Carl Gassner patented a variant of the Leclanché cell which came to be known as the dry cell because it did not have a free liquid electrolyte. Instead, the ammonium chloride was mixed with Plaster of Paris to create a paste, with a bit of zinc chloride added in to extend the shelf life. The manganese dioxide cathode was dipped in this paste, and both were sealed in a zinc shell which also acted as the anode.

Unlike previous wet cells, Gassner's dry cell was more solid, did not require maintenance, did not spill and could be used in any orientation. It provided a potential of 1.5 volts. The first mass-produced model was the Columbia dry cell, first marketed by the National Carbon Company in 1896. The NCC improved Gassner's model by replacing the plaster of Paris with coiled cardboard, an innovation which left more space for the cathode and made the battery easier to assemble. It was the first convenient battery for the masses and made portable electrical devices practical. The flashlight was invented that same year.[12]

The zinc-carbon battery (as it came to be known) is still manufactured today.

 

1899 - The nickel-cadmium battery: the first alkaline battery

In 1899, a Swedish scientist named Waldmar Jungner invented the nickel-cadmium battery, a rechargeable battery that had nickel and cadmium electrodes in a potassium hydroxide solution; the first battery to use an alkaline electrolyte. It was commericalised in Sweden in 1910 and reached the United States in 1946. The first models were robust and had significantly better energy density than lead-acid batteries, but were much more expensive.

 

1903 - The nickel-iron battery

Jungner also invented a nickel-iron battery the same year as his Ni-Cad battery, but found it to be inferior to its cadmium counterpart and consequently never bothered patenting it. It produced a lot more hydrogen gas when being charged, meaning it couldn't be sealed, and the charging process was less efficient (it was, however, cheaper). However, Thomas Edison picked up Jugner's nickel-iron battery design, patented it himself and sold it in 1903. Edison wanted to commercialise a more lightweight and durable substitute for the lead-acid battery that powered some early automobiles, and hoped that by doing so electric cars would become the standard, with his firm as its main battery vendor. However, customers found his first model to be prone to leakage and short battery life, and it did not outperform the lead-acid cell by much either. Although Edison was able to produce a more reliable and powerful model seven years later, by this time the inexpensive and reliable Model T Ford had made gasoline engine cars the standard. Nevertheless, Edison's battery achieved great success in other applications.[13]

 

1955 - The common alkaline battery

Up until the late 1950s the zinc-carbon battery continued to be a popular primary cell battery, but its relatively low battery life hampered sales. In 1955, an engineer working for Eveready (now known as Energizer) named Lewis Urry was tasked with finding a way to extend the life of zinc-carbon batteries, but Urry decided instead that alkaline batteries held more promise. Up until now, longer-lasting alkaline batteries were unfeasibly expensive. Urry's battery consisted of a manganese dioxide cathode and a powdered zinc anode with an alkaline electrolyte. Using powdered zinc gave the anode a greater surface area. These batteries hit the market in 1959.

Late 1980s - The nickel metal-hydride battery

Near the end of the 1980s, Stanford R. Ovshinsky invented the nickel metal hydride battery, a variant of the NiCad which replaced the cadmium electrode with one made of a hydrogen-absorbing alloy (most commonly a mixture of the rare earth metals such lanthanum, cerium, neodymium and praseodymium]]). NiMH batteries tend to have longer lifespans than NiCad batteries (and their lifespans continue to increase as manufacturers experiment with new alloys), and since cadmium is toxic, NiMH batteries are less damaging to the environment.

 

1970s and 1990s - The lithium and lithium-ion batteries

Lithium is the metal with lowest density and has the greatest electrochemical potential and energy-to-weight ratio, so in theory it would be an ideal material for batteries. Experimentation with lithium batteries began in 1912 under G.N. Lewis, and in the 1970s the first lithium batteries were sold.

In the 1980s, an American chemist John B. Goodenough lead a research team at Sony that would produce the lithium ion battery, a rechargeable and more stable version of the lithium battery; the first ones were sold in 1991.

In 1996, the lithium ion polymer battery was released. These batteries hold their electrolyte in a solid polymer composite instead of a liquid solvent, and the electrodes and separators are laminated to each other. The latter difference allows the battery to be encased in a flexible wrapping instead of a rigid metal casing, which means such batteries can be specifically shaped to fit a particular device. They also have a higher energy density than normal lithium ion batteries. These advantages have made it a choice battery for portable electronics such as mobile phones and PDAs, as they allow for more flexible and compact design.

References and notes

  1. ^ a b c d e f g h James B. Calvert. The Electromagnetic Telegraph. Retrieved on 2007-01-12.
  2. ^ Letter to Peter Collinson, Benjamin Franklin (1749)
  3. ^ Origin of Electrical Power, National Museum of American History; Last accessed on Jan 2, 2007
  4. ^ Institute and Museum of the History of Science. Trough Battery. Retrieved on 2007-01-15.
  5. ^ Volta and the "Pile", Case Western Reserve University; Last accessed on Jan 2, 2007
  6. ^ Giorgio Carboni, Experiments in Electrochemistry; Last accessed on Feb 22, 2007.
  7. ^ http://www.corrosion-doctors.org/Biographies/PlantelBio.htm, Corrosion-doctors.org; Last accessed on Jan 3, 2007
  8. ^ Tools of Telegraphy, Telegraph Lore; Last accessed Jan 9, 2007
  9. ^ Gregory S. Raven, Recollections of a Narrow Guage Lightning Slinger
  10. ^ Zinc-Carbon Batteries, Molecular Expressions; Last accessed Jan 9, 2007
  11. ^ Battery Facts. Leclanché Cell. Retrieved on 2007-01-09.
  12. ^ The Columbia Dry Cell Battery, American Chemical Society; Last accessed on Jan 9, 2007
  13. ^ IEEE Virtual Museum. Edison's Alkaline Battery. Retrieved on 2007-01-10.

See also

History of electrochemistry

Retrieved from "http://en.wikipedia.org/wiki/History_of_the_battery"

 



Siti amici:  Lonweb Daisy Stories English4Life
 
Sito segnalato da INGLESE.IT

 

 
CONDIZIONI DI USO DI QUESTO SITO
L'utente può utilizzare il nostro sito solo se comprende e accetta quanto segue:

  • Le risorse linguistiche gratuite presentate in questo sito si possono utilizzare esclusivamente per uso personale e non commerciale con tassativa esclusione di ogni condivisione comunque effettuata. Tutti i diritti sono riservati. La riproduzione anche parziale è vietata senza autorizzazione scritta.
  • Il nome del sito EnglishGratis è esclusivamente un marchio e un nome di dominio internet che fa riferimento alla disponibilità sul sito di un numero molto elevato di risorse gratuite e non implica dunque alcuna promessa di gratuità relativamente a prodotti e servizi nostri o di terze parti pubblicizzati a mezzo banner e link, o contrassegnati chiaramente come prodotti a pagamento (anche ma non solo con la menzione "Annuncio pubblicitario"), o comunque menzionati nelle pagine del sito ma non disponibili sulle pagine pubbliche, non protette da password, del sito stesso.
  • La pubblicità di terze parti è in questo momento affidata al servizio Google AdSense che sceglie secondo automatismi di carattere algoritmico gli annunci di terze parti che compariranno sul nostro sito e sui quali non abbiamo alcun modo di influire. Non siamo quindi responsabili del contenuto di questi annunci e delle eventuali affermazioni o promesse che in essi vengono fatte!
  • Coloro che si iscrivono alla nostra newsletter (iscrizione caratterizzatalla da procedura double opt-in) accettano di ricevere saltuariamente delle comunicazioni di carattere informativo sulle novità del sito e, occasionalmente, delle offerte speciali relative a prodotti linguistici a pagamento sia nostri che di altre aziende. In ogni caso chiunque può disiscriversi semplicemente cliccando sulla scritta Cancella l'iscrizione che si trova in fondo alla newsletter, non è quindi necessario scriverci per chiedere esplicitamente la cancellazione dell'iscrizione.
  • L'utente, inoltre, accetta di tenere Casiraghi Jones Publishing SRL indenne da qualsiasi tipo di responsabilità per l'uso - ed eventuali conseguenze di esso - degli esercizi e delle informazioni linguistiche e grammaticali contenute sul siti. Le risposte grammaticali sono infatti improntate ad un criterio di praticità e pragmaticità più che ad una completezza ed esaustività che finirebbe per frastornare, per l'eccesso di informazione fornita, il nostro utente.

     

    ENGLISHGRATIS.COM è un sito di Casiraghi Jones Publishing SRL
    Piazzale Cadorna 10 - 20123 Milano - Italia
    Tel. 02-36.55.30.40 - email:
    Iscritta al Registro Imprese di MILANO - C.F. e PARTITA IVA: 11603360154
    Iscritta al R.E.A. di Milano n.1478561 • Capitale Sociale
    10.400 interamente versato

    Roberto Casiraghi                                                                                Crystal Jones