••••• login ELINGUE Contatti: Tel. 02-36553040
              Email:
   

Selettore risorse


     IL Metodo  |  Grammatica  |  Inglese con noi  |  Multiblog  |  INSEGNARE AGLI ADULTI  |  INSEGNARE AI BAMBINI  |  AudioBooks  |  RISORSE SFiziosE  |  Articoli  |  Tips  | testi pAralleli  |  VIDEO SOTTOTITOLATI

   AREA SHOP  RIVISTA ENGLISH4LIFE  | CORS0 20 ORE DI INGLESE |  CORSO 20 ORE DI SPAGNOLO | CORSO 20 ORE DI TEDESCO  | CORSO 20 ORE DI FRANCESE  | CORSO 20 ORE DI RUSSO 


 

WIKIBOOKS
DISPONIBILI
•••••••••

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. AAAA battery
  2. AAA battery
  3. AA battery
  4. A battery
  5. Absorbent glass mat
  6. Alessandro Volta
  7. Alkaline battery
  8. Alkaline fuel cell
  9. Aluminium battery
  10. Ampere
  11. Atomic battery
  12. Backup battery
  13. Baghdad Battery
  14. Batteries
  15. Battery charger
  16. B battery
  17. Bernard S. Baker
  18. Beta-alumina solid electrolyte
  19. Betavoltaics
  20. Bio-nano generator
  21. Blue energy
  22. Bunsen cell
  23. Car battery
  24. C battery
  25. Clark cell
  26. Concentration cell
  27. Coulomb
  28. 2CR5
  29. Daniell cell
  30. Direct borohydride fuel cell
  31. Direct-ethanol fuel cell
  32. Direct methanol fuel cell
  33. Dry cell
  34. Dry pile
  35. Duracell
  36. Duracell Bunny
  37. Earth battery
  38. Electric charge
  39. Electric current
  40. Electricity
  41. Electrochemical cell
  42. Electrochemical potential
  43. Electro-galvanic fuel cell
  44. Electrolysis
  45. Electrolyte
  46. Electrolytic cell
  47. Electromagnetism
  48. Electromotive force
  49. Energizer Bunny
  50. Energy
  51. Energy density
  52. Energy storage
  53. Flashlight
  54. Float charging
  55. Flow Battery
  56. Formic acid fuel cell
  57. Fuel cell
  58. Fuel cell bus trial
  59. Galvanic cell
  60. Gel battery
  61. Grove cell
  62. Half cell
  63. History of the battery
  64. Hybrid vehicle
  65. Lead-acid battery
  66. Leclanché cell
  67. Lemon battery
  68. List of battery sizes
  69. List of battery types
  70. List of fuel cell vehicles
  71. Lithium battery
  72. Lithium ion batteries
  73. Lithium iron phosphate battery
  74. Lithium polymer cell
  75. LR44 battery
  76. Luigi Galvani
  77. Manganese dioxide
  78. Memory effect
  79. Mercury battery
  80. Metal hydride fuel cell
  81. Methane reformer
  82. Methanol reformer
  83. Michael Faraday
  84. Microbial fuel cell
  85. Molten carbonate fuel cell
  86. Molten salt battery
  87. Nickel-cadmium battery
  88. Nickel-iron battery
  89. Nickel metal hydride
  90. Nickel-zinc battery
  91. Open-circuit voltage
  92. Optoelectric nuclear battery
  93. Organic radical battery
  94. Oxyride battery
  95. Panasonic EV Energy Co
  96. Peukert's law
  97. Phosphoric acid fuel cell
  98. Photoelectrochemical cell
  99. Polymer-based battery
  100. Power density
  101. Power management
  102. Power outage
  103. PP3 battery
  104. Primary cell
  105. Prius
  106. Proton exchange membrane
  107. Proton exchange membrane fuel cell
  108. Protonic ceramic fuel cell
  109. Radioisotope piezoelectric generator
  110. Ragone chart
  111. RCR-V3
  112. Rechargeable alkaline battery
  113. Reverse charging
  114. Reversible fuel cell
  115. Searchlight
  116. Secondary cell
  117. Short circuit
  118. Silver-oxide battery
  119. Smart Battery Data
  120. Smart battery system
  121. Sodium-sulfur battery
  122. Solid oxide fuel cell
  123. Super iron battery
  124. Thermionic converter
  125. Trickle charging
  126. Vanadium redox battery
  127. Volt
  128. Voltage
  129. Voltaic pile
  130. Watch battery
  131. Water-activated battery
  132. Weston cell
  133. Wet cell
  134. Zinc-air battery
  135. Zinc-bromine flow battery
  136. Zinc-carbon battery
 



BATTERIES
This article is from:
http://en.wikipedia.org/wiki/Electrolysis

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Electrolysis

From Wikipedia, the free encyclopedia

 
This article is about the chemical process. For the method of epilation, see Electrology.

In chemistry and manufacturing, electrolysis is a method of separating bonded elements and compounds by passing an electric current through them. This can be seen in isolating copper compound from its ore.


 

Overview

An ionic compound is dissolved with an appropriate solvent, or otherwise melted by heat, so that its ions are available in the liquid. An electrical current is applied between a pair of inert electrodes immersed in the liquid. The negatively charged electrode is called the cathode, and the positively charged one the anode. Each electrode attracts ions which are of the opposite charge. Therefore, positively charged ions (called cations) move towards the cathode, while negatively charged ions (termed anions) move toward the anode. The energy required to separate the ions, and cause them to gather at the respective electrodes, is provided by an electrical power supply. At the probes, electrons are absorbed or released by the ions, forming a collection of the desired element or compound.

In electrolysis, the anode is the positive electrode, meaning it has a deficit of electrons; species in contact with the anode can be stripped of electrons (i.e., they are oxidized). The cathode is the negative electrode, meaning it has a surplus of electrons. Species in contact with the cathode tend to gain electrons (i.e., they are reduced).

The amount of electrical energy that must be added equals the change in Gibbs free energy of the reaction plus the losses in the system. The losses can (theoretically) be arbitrarily close to zero, so the maximum thermodynamic efficiency equals the enthalpy change divided by the free energy change of the reaction. In most cases the electric input is larger than the enthalpy change of the reaction, so some energy is released in the form of heat.[citation needed] In some cases, for instance in the electrolysis of steam into hydrogen and oxygen at high temperature, the opposite is true. Heat is absorbed from the surroundings, and the heating value of the produced hydrogen is higher than the electric input. In this case the efficiency can be said to be greater than 100%.[citation needed] (It is worth noting that the maximum theoretic efficiency of a fuel cell is the inverse of that of electrolysis. It is thus impossible to create a perpetual motion machine by combining the two processes. See water fuel cell for an example of such an attempt.)

A higher current flow (amperage) through the cell means it will be passing more electrons through it at any given time. This means a faster rate of reduction at the cathode and a faster rate of oxidation at the anode. This corresponds to a greater number of moles of product. The amount of current that passes depends on the conductance of the electrodes and electrolyte, though it also depends on how much current the power source itself can generate. Current also makes a difference in that it can shift chemical equilibria by sheer mass action. The processes in an electrolytic cell with just two or three reactants can become very, very complex. Most of the time it is best to search the literature to see what current density works best for a desired process. For instance, metals plated at a certain current density might form a durable and shiny coating on the substrate, while some other current density might form an excessively grainy, dull coating.

A higher potential difference (voltage) applied to the cell means the cathode will have more energy to bring about reduction, and the anode will have more energy to bring about oxidation. Higher potential difference enables the electrolytic cell to oxidize and reduce energetically more "difficult" compounds. This can drastically change what products will form in a given experiment. On a practical level, both current and voltage determine what will form in a cell.

The following technologies are related to electrolysis:

  • Electrochemical cells, including the hydrogen fuel cell, use the reverse of this process.
  • Gel electrophoresis is an electrolysis where the solvent is a gel: it is used to separate substances, such as DNA strands, based on their electrical charge.

Electrolysis of water

Hoffman electrolysis apparatus used in electrolysis of water
Hoffman electrolysis apparatus used in electrolysis of water
Main article: Electrolysis of water

One important use of electrolysis of water is to produce hydrogen.

2H2O(l) → 2H2(g) + O2(g)

This has been suggested as a way of shifting society toward using hydrogen as an energy carrier for powering electric motors and internal combustion engines. (See hydrogen economy.)

Electrolysis of water can be observed by passing direct current from a battery or other DC power supply (e.g. computer power supply 5 volt rail) through a cup of water (in practice a saltwater solution increases the reaction intensity making it easier to observe). Using platinum electrodes, hydrogen gas will be seen to bubble up at the cathode, and oxygen will bubble at the anode. If other metals are used as the anode, there is a chance that the oxygen will react with the anode instead of being released as a gas. For example using iron electrodes in a sodium chloride solution electrolyte, iron oxide will be produced at the anode, which will react to form iron hydroxide. When producing large quantities of hydrogen, this can significantly contaminate the electrolytic cell - which is why iron is not used for commercial electrolysis.

The energy efficiency of water electrolysis varies widely. The efficiency is a measure of what fraction of electrical energy used is actually contained within the hydrogen. Some of the electrical energy is converted to heat, a useless by-product. Some reports quote efficiencies between 50–70%[1] This efficiency is based on the Lower Heating Value of Hydrogen. The Lower Heating Value of Hydrogen is thermal energy released when Hydrogen is combusted. This does not represent the total amount of energy within the Hydrogen, hence the efficiency is lower than a more strict definition. Other reports quote the theoretical maximum efficiency of electrolysis. The theoretical maximum efficiency is between 80–94%.[2]. The theoretical maximum considers the total amount of energy absorbed by both the hydrogen and oxygen. These values only refer to the efficiency of converting electrical energy into hydrogen's chemical energy. The energy lost in generating the electricity is not included. For instance, when considering a power plant that converts the heat of nuclear reactions into hydrogen via electrolysis, the total efficiency is more like 25–40%.[3]

About four percent of hydrogen gas produced worldwide is created by electrolysis, and normally used onsite. Hydrogen is used for the creation of ammonia for fertilizer via the Haber process, and converting heavy petroleum sources to lighter fractions via hydrocracking. There is some speculation about future development of hydrogen as an energy carrier.

Typically in industry, voltages as high as 17 kV may be used to eliminate the need for the electrodes to be physically close, and ionic compounds such as salt are not added.

Experimenters

Scientific pioneers of electrolysis included:

  • Humphry Davy
  • Michael Faraday
  • Paul Héroult
  • Svante Arrhenius
  • Adolph Wilhelm Hermann Kolbe
  • William Nicholson
  • Joseph Louis Gay-Lussac
  • Alexander von Humboldt
  • William Chiang
  • David Kondner

More recently, electrolysis of heavy water was performed by Fleischmann and Pons in their famous experiment, allegedly resulting in anomalous heat generation and the controversial claim of cold fusion.

First law of electrolysis

In 1832, Michael Faraday reported that the quantity of elements separated by passing an electrical current through a molten or dissolved salt was proportional to the quantity of electric charge passed through the circuit. This became the basis of the first law of electrolysis.

Second law of electrolysis

Faraday also discovered that the mass of the resulting separated elements was directly proportional to the atomic masses of the elements when an appropriate integral divisor was applied. This provided strong evidence that discrete particles of electricity existed as parts of the atoms of elements.

Industrial uses

  • Manufacture of aluminium, lithium, sodium, potassium, aspirin.
  • Manufacture of hydrogen for hydrogen cars and fuel cells.
  • High-temperature electrolysis is also being used for this.
  • Coulometric techniques can be used to determine the amount of matter transformed during electrolysis by measuring the amount of electricity required to perform the electrolysis.
  • Manufacture of chlorine and sodium hydroxide.
  • Manufacture of sodium and potassium chlorate.
  • Manufacture of perfluorinated organic compounds like trifluoroacetic acid.

Electrolysis has many uses:

  • 1. Electrometallurgy is the process of reduction of metals from metallic compounds to obtain the pure form of metal using electrolysis. For example: Sodium Hydroxide in its metallic form is separated by electrolysis into sodium and hydrogen, both of which have important chemical uses.
  • 2. Anodization is another very important use of electrolysis. It makes the surface of metals resistant to corrosion. Such as ships in water are saved from being corroded by oxygen in water by this process which is done with the help of electrolysis. This process is also used to make surfaces more decorative.
  • 3. Electro refining is used to purify metals by electrolysis. As in, if a compound of copper and some impurities is electrolyzed, the copper gets separated and pure copper forms around the cathode while the impurities form around the anode.
  • 4. Electrolyzed Water has been found to be the most pure form of water and is used in many dentistry and medicinal applications.
  • 5. A battery works due to electrolysis. Humphry Davy also discovered it when he discovered electrolysis. He found that lithium acts as an electrolyte and provides energy in the form of current for things to run. Battery is the fuel of all technology today. Hence, proving the most important benefit of electrolysis.
  • 6. Breathing in space is another use of electrolysis. The oxygen that astronauts breathe in space is produced by electrolysis of water, which uses solar panels and solar energy as a source of electric current passing through water.
  • 7. Electroplating is yet another use of electrolysis. It is used in layering metals to fortify them. Electroplating is used in many industries for functional and/or decorative purposes, such as in vehicles. This process also layers the nickel coins.
  • 8. Scientists already have prepared the plans for future use of electrolysis. It has been found that hydrogen could be the fuel of the future. The process of electrolysis can obtain this hydrogen. All that is needed is a lot of cheap electricity to perform this process.

See also

Look up electrolysis in
Wiktionary, the free dictionary.
  • Faraday's law of electrolysis
  • The Faraday constant
  • Michael Faraday
  • Gas cracker
Retrieved from "http://en.wikipedia.org/wiki/Electrolysis"

 



Siti amici:  Lonweb Daisy Stories English4Life
 
Sito segnalato da INGLESE.IT

 

 
CONDIZIONI DI USO DI QUESTO SITO
L'utente può utilizzare il nostro sito solo se comprende e accetta quanto segue:

  • Le risorse linguistiche gratuite presentate in questo sito si possono utilizzare esclusivamente per uso personale e non commerciale con tassativa esclusione di ogni condivisione comunque effettuata. Tutti i diritti sono riservati. La riproduzione anche parziale è vietata senza autorizzazione scritta.
  • Il nome del sito EnglishGratis è esclusivamente un marchio e un nome di dominio internet che fa riferimento alla disponibilità sul sito di un numero molto elevato di risorse gratuite e non implica dunque alcuna promessa di gratuità relativamente a prodotti e servizi nostri o di terze parti pubblicizzati a mezzo banner e link, o contrassegnati chiaramente come prodotti a pagamento (anche ma non solo con la menzione "Annuncio pubblicitario"), o comunque menzionati nelle pagine del sito ma non disponibili sulle pagine pubbliche, non protette da password, del sito stesso.
  • La pubblicità di terze parti è in questo momento affidata al servizio Google AdSense che sceglie secondo automatismi di carattere algoritmico gli annunci di terze parti che compariranno sul nostro sito e sui quali non abbiamo alcun modo di influire. Non siamo quindi responsabili del contenuto di questi annunci e delle eventuali affermazioni o promesse che in essi vengono fatte!
  • Coloro che si iscrivono alla nostra newsletter (iscrizione caratterizzatalla da procedura double opt-in) accettano di ricevere saltuariamente delle comunicazioni di carattere informativo sulle novità del sito e, occasionalmente, delle offerte speciali relative a prodotti linguistici a pagamento sia nostri che di altre aziende. In ogni caso chiunque può disiscriversi semplicemente cliccando sulla scritta Cancella l'iscrizione che si trova in fondo alla newsletter, non è quindi necessario scriverci per chiedere esplicitamente la cancellazione dell'iscrizione.
  • L'utente, inoltre, accetta di tenere Casiraghi Jones Publishing SRL indenne da qualsiasi tipo di responsabilità per l'uso - ed eventuali conseguenze di esso - degli esercizi e delle informazioni linguistiche e grammaticali contenute sul siti. Le risposte grammaticali sono infatti improntate ad un criterio di praticità e pragmaticità più che ad una completezza ed esaustività che finirebbe per frastornare, per l'eccesso di informazione fornita, il nostro utente.

     

    ENGLISHGRATIS.COM è un sito di Casiraghi Jones Publishing SRL
    Piazzale Cadorna 10 - 20123 Milano - Italia
    Tel. 02-36.55.30.40 - email:
    Iscritta al Registro Imprese di MILANO - C.F. e PARTITA IVA: 11603360154
    Iscritta al R.E.A. di Milano n.1478561 • Capitale Sociale
    10.400 interamente versato

    Roberto Casiraghi                                                                                Crystal Jones