New Page 1

LA GRAMMATICA DI ENGLISH GRATIS IN VERSIONE MOBILE   INFORMATIVA PRIVACY

  NUOVA SEZIONE ELINGUE

 

Selettore risorse   

   

 

                                         IL Metodo  |  Grammatica  |  RISPOSTE GRAMMATICALI  |  Multiblog  |  INSEGNARE AGLI ADULTI  |  INSEGNARE AI BAMBINI  |  AudioBooks  |  RISORSE SFiziosE  |  Articoli  |  Tips  | testi pAralleli  |  VIDEO SOTTOTITOLATI
                                                                                         ESERCIZI :   Serie 1 - 2 - 3  - 4 - 5  SERVIZI:   Pronunciatore di inglese - Dizionario - Convertitore IPA/UK - IPA/US - Convertitore di valute in lire ed euro                                              

 

 

WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Active recall
  2. Alzheimer's disease
  3. Amnesia
  4. Anamonic
  5. Anterograde amnesia
  6. Atkinson-Shiffrin memory model
  7. Attention versus memory in prefrontal cortex
  8. Baddeley's Model of Working Memory
  9. Barnes maze
  10. Binding problem
  11. Body memory
  12. Cellular memory
  13. Choice-supportive bias
  14. Chunking
  15. Clive Wearing
  16. Commentarii
  17. Confabulation
  18. Cue-dependent forgetting
  19. Decay theory
  20. Declarative memory
  21. Eidetic memory
  22. Electracy
  23. Emotion and memory
  24. Encoding
  25. Engram
  26. Episodic memory
  27. Executive system
  28. Exosomatic memory
  29. Explicit memory
  30. Exposure effect
  31. Eyewitness memory reconstruction
  32. False memory
  33. False Memory Syndrome Foundation
  34. Flashbulb memory
  35. Forgetting
  36. Forgetting curve
  37. Functional fixedness
  38. Hindsight bias
  39. HM
  40. Human memory process
  41. Hyperthymesia
  42. Iconic memory
  43. Interference theory
  44. Involuntary memory
  45. Korsakoff's syndrome
  46. Lacunar amnesia
  47. Limbic system
  48. Linkword
  49. List of memory biases
  50. Long-term memory
  51. Long-term potentiation
  52. Lost in the mall technique
  53. Memory
  54. Memory and aging
  55. MemoryArchive
  56. Memory consolidation
  57. Memory distrust syndrome
  58. Memory inhibition
  59. Memory span
  60. Method of loci
  61. Mind map
  62. Mnemonic
  63. Mnemonic acronym system
  64. Mnemonic dominic system
  65. Mnemonic link system
  66. Mnemonic major system
  67. Mnemonic peg system
  68. Mnemonic room system
  69. Mnemonic verses
  70. Mnemonist
  71. Philip Staufen
  72. Phonological loop
  73. Picture superiority effect
  74. Piphilology
  75. Positivity effect
  76. Procedural memory
  77. Prospective memory
  78. Recollection
  79. Repressed memory
  80. Retrograde amnesia
  81. Retrospective memory
  82. Rosy retrospection
  83. Self-referential encoding
  84. Sensory memory
  85. Seven Meta Patterns
  86. Shass pollak
  87. Short-term memory
  88. Source amnesia
  89. Spaced repetition
  90. SuperMemo
  91. Synthetic memory
  92. Tally sticks
  93. Testing effect
  94. Tetris effect
  95. The Courage to Heal
  96. The Magical Number Seven, Plus or Minus Two
  97. Tip of the tongue
  98. Visual memory
  99. Visual short term memory
  100. Visuospatial sketchpad
  101. VTrain
  102. Working memory


 

 
CONDIZIONI DI USO DI QUESTO SITO
L'utente può utilizzare il nostro sito solo se comprende e accetta quanto segue:

  • Le risorse linguistiche gratuite presentate in questo sito si possono utilizzare esclusivamente per uso personale e non commerciale con tassativa esclusione di ogni condivisione comunque effettuata. Tutti i diritti sono riservati. La riproduzione anche parziale è vietata senza autorizzazione scritta.
  • Il nome del sito EnglishGratis è esclusivamente un marchio e un nome di dominio internet che fa riferimento alla disponibilità sul sito di un numero molto elevato di risorse gratuite e non implica dunque alcuna promessa di gratuità relativamente a prodotti e servizi nostri o di terze parti pubblicizzati a mezzo banner e link, o contrassegnati chiaramente come prodotti a pagamento (anche ma non solo con la menzione "Annuncio pubblicitario"), o comunque menzionati nelle pagine del sito ma non disponibili sulle pagine pubbliche, non protette da password, del sito stesso.
  • La pubblicità di terze parti è in questo momento affidata al servizio Google AdSense che sceglie secondo automatismi di carattere algoritmico gli annunci di terze parti che compariranno sul nostro sito e sui quali non abbiamo alcun modo di influire. Non siamo quindi responsabili del contenuto di questi annunci e delle eventuali affermazioni o promesse che in essi vengono fatte!
  • L'utente, inoltre, accetta di tenerci indenni da qualsiasi tipo di responsabilità per l'uso - ed eventuali conseguenze di esso - degli esercizi e delle informazioni linguistiche e grammaticali contenute sul siti. Le risposte grammaticali sono infatti improntate ad un criterio di praticità e pragmaticità più che ad una completezza ed esaustività che finirebbe per frastornare, per l'eccesso di informazione fornita, il nostro utente. La segnalazione di eventuali errori è gradita e darà luogo ad una immediata rettifica.

     

    ENGLISHGRATIS.COM è un sito personale di
    Roberto Casiraghi e Crystal Jones
    email: robertocasiraghi at iol punto it

    Roberto Casiraghi           
    INFORMATIVA SULLA PRIVACY              Crystal Jones


    Siti amici:  Lonweb Daisy Stories English4Life Scuolitalia
    Sito segnalato da INGLESE.IT

 
 



THE THEORY OF MEMORY
This article is from:
http://en.wikipedia.org/wiki/The_Magical_Number_Seven%2C_Plus_or_Minus_Two

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

The Magical Number Seven, Plus or Minus Two

From Wikipedia, the free encyclopedia

 

The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information is a 1956 paper by the cognitive psychologist George A. Miller. In it Miller showed a number of remarkable coincidences between the channel capacity of a number of human cognitive and perceptual tasks. In each case, the effective channel capacity is equivalent to between 5 and 9 equally-weighted error-less choices: on average, about 2.5 bits of information. Miller hypothesized that these may all be due to some common but unknown underlying mechanism.

Urban legends surrounding 7±2

A number of urban legends have grown up around the number 7±2 and human performance on various cognitive tasks. While Miller's paper is most often cited, by coincidence research into short term memory also threw up a 7±2 finding which seems to have added impetus to the claims made.

As outlined above, Miller's paper simply pointed out that channel capacity on various tasks was around 2.5 bits of information. Measurements of human short term memory capacity also found a 7±2 limit. However, this limit was eventually found to be a result of using subjects who were speakers of English to remember sequences of single digits. It turns out that one component of human working memory, the phonological loop, is capable of holding around 2 seconds of sound. Two seconds is the duration of the English spoken form of 7±2 digits (in Chinese it is around 9 and in Welsh around 6), the variation is highly correlated with the rate at which people speak.

The 7±2 urban legends are various rules specifying the maximum number of items that can occur in a given context (eg, in software engineering the maximum number of subroutines that should be called from the main program). Whether or not these 7±2 rules provide the benefits claimed of them can be verified only by experiments. However, neither Miller's paper or the early short term memory research is likely to provide the primary experimental evidence needed to back up such claims.

Working memory capacity

Working memory is generally considered to have limited capacity. The earliest quantification of the capacity limit associated with short-term memory was the magical number seven introduced by Miller (1956)[1]. He noticed that the memory span of young adults was around seven elements, called chunks, regardless whether the elements were digits, letters, words, or other units. Later research revealed that span does depend on the category of chunks used (e.g., span is around seven for digits, around six for letters, and around 5 for words), and even on features of the chunks within a category. For instance, span is lower for long than for short words. In general, memory span for verbal contents (digits, letters, words, etc.) strongly depends on the time it takes to speak the contents aloud, and on the lexical status of the contents (i.e., whether the contents are words known to the person or not)[2]. Several other factors also affect a person's measured span, and therefore it is difficult to pin down the capacity of short-term or working memory to a number of chunks. Nonetheless, Cowan (2001)[3] has proposed that working memory has a capacity of about four chunks in young adults (and less in children and old adults).

Software engineering related

Ed Yourdon in his Modern Structured Analysis (Prentice Hall, 1979) specified that the maximum number of subroutines that should be called from the main program should be between 5 and 9. This heuristic was not proposed as being due to any computer limit; rather, it was suggested that the programmer becomes confused when trying to understand the program.

Sanjiv Sidhu also claims to have arrived independently at the same 7±2 figure, his official biography states: Based on his observation that even the smartest people can juggle no more than nine variables when making decisions, he proposed a design for computer software based on artificial intelligence and advanced simulation techniques. This claim, however, may not be more than an other addition to the urban legend surrounding 7±2

Other cognitive numeric limits

The concept of a limit is illustrated by imagining the patterns on the faces of a die (see dice). It is easy for many people to visualise each of the six faces. Now imagine seven dots, eight dots, nine dots, ten dots, and so on. At some point it becomes impossible to visualise the dots as a single pattern (a process known as subitizing), and one thinks of, say, eight as two groups of four. The upper limit of your visualisation of a number represented as dots is your subsisting limit for that exercise.

The film Rain Man, starring Dustin Hoffman, portrayed an autistic savant, who was able to visualise the number represented by an entire box of toothpicks spilled on the floor. A similar feat was clinically observed by neuropsychologist Oliver Sacks and reported in his book The Man Who Mistook His Wife for a Hat. Therefore one might suppose that this limit is an arbitrary limit imposed by our cognition rather than necessarily being a physical limit.

Hrair from Watership Down and applications within programming

Hrair is a number too large to count. This term is from the fictional language Lapine used in Richard Adams's Watership Down. In this novel, a rabbit's hrair is greater than 4 whereas, for humans, hrair would be greater than 7 plus or minus 2. From a psychological perspective, hrair is the point where the person is overwhelmed by concepts or change. The interesting thing about a person reaching their hrair point is that we are not only unable to understand the new concept or stimulus when it is introduced, but it makes us unable to continue as effectively with what we were doing before. The term hrair limit as used by Ed Yourdon in his Modern Structured Analysis (Prentice Hall, 1979) is the maximum number of subroutines that should be called from the main program, again set at between 5 and 9. This heuristic was not proposed as being due to any computer limit; rather, it was suggested that the programmer becomes confused when trying to understand the program.

In organisation theory the limit has a similar meaning: the maximum number of projects that one can be involved in simultaneously before chaos starts to ensue.

References

  • George A. Miller. The Magical Number Seven, Plus or Minus Two. The Psychological Review, 1956, vol. 63, pp. 81-97

See also

  • Fitts' law
  • Hick's law
  • Subitizing
  • Working memory
  • Chunking (psychology)

External links

  • George A. Miller. The Magical Number Seven, Plus or Minus Two. The Psychological Review, 1956, vol. 63, pp. 81-97
  • Another online version of the same paper
  • In-depth discussion on many myths around Miller's paper at Edward Tufte's site.
  • The 7±2 Urban Legend (pdf file)
Retrieved from "http://en.wikipedia.org/wiki/The_Magical_Number_Seven%2C_Plus_or_Minus_Two"