WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Adobe Reader
  2. Adware
  3. Altavista
  4. AOL
  5. Apple Macintosh
  6. Application software
  7. Arrow key
  8. Artificial Intelligence
  9. ASCII
  10. Assembly language
  11. Automatic translation
  12. Avatar
  13. Babylon
  14. Bandwidth
  15. Bit
  16. BitTorrent
  17. Black hat
  18. Blog
  19. Bluetooth
  20. Bulletin board system
  21. Byte
  22. Cache memory
  23. Celeron
  24. Central processing unit
  25. Chat room
  26. Client
  27. Command line interface
  28. Compiler
  29. Computer
  30. Computer bus
  31. Computer card
  32. Computer display
  33. Computer file
  34. Computer games
  35. Computer graphics
  36. Computer hardware
  37. Computer keyboard
  38. Computer networking
  39. Computer printer
  40. Computer program
  41. Computer programmer
  42. Computer science
  43. Computer security
  44. Computer software
  45. Computer storage
  46. Computer system
  47. Computer terminal
  48. Computer virus
  49. Computing
  50. Conference call
  51. Context menu
  52. Creative commons
  53. Creative Commons License
  54. Creative Technology
  55. Cursor
  56. Data
  57. Database
  58. Data storage device
  59. Debuggers
  60. Demo
  61. Desktop computer
  62. Digital divide
  63. Discussion groups
  64. DNS server
  65. Domain name
  66. DOS
  67. Download
  68. Download manager
  69. DVD-ROM
  70. DVD-RW
  71. E-mail
  72. E-mail spam
  73. File Transfer Protocol
  74. Firewall
  75. Firmware
  76. Flash memory
  77. Floppy disk drive
  78. GNU
  79. GNU General Public License
  80. GNU Project
  81. Google
  82. Google AdWords
  83. Google bomb
  84. Graphics
  85. Graphics card
  86. Hacker
  87. Hacker culture
  88. Hard disk
  89. High-level programming language
  90. Home computer
  91. HTML
  92. Hyperlink
  93. IBM
  94. Image processing
  95. Image scanner
  96. Instant messaging
  97. Instruction
  98. Intel
  99. Intel Core 2
  100. Interface
  101. Internet
  102. Internet bot
  103. Internet Explorer
  104. Internet protocols
  105. Internet service provider
  106. Interoperability
  107. IP addresses
  108. IPod
  109. Joystick
  110. JPEG
  111. Keyword
  112. Laptop computer
  113. Linux
  114. Linux kernel
  115. Liquid crystal display
  116. List of file formats
  117. List of Google products
  118. Local area network
  119. Logitech
  120. Machine language
  121. Mac OS X
  122. Macromedia Flash
  123. Mainframe computer
  124. Malware
  125. Media center
  126. Media player
  127. Megabyte
  128. Microsoft
  129. Microsoft Windows
  130. Microsoft Word
  131. Mirror site
  132. Modem
  133. Motherboard
  134. Mouse
  135. Mouse pad
  136. Mozilla Firefox
  137. Mp3
  138. MPEG
  139. MPEG-4
  140. Multimedia
  141. Musical Instrument Digital Interface
  142. Netscape
  143. Network card
  144. News ticker
  145. Office suite
  146. Online auction
  147. Online chat
  148. Open Directory Project
  149. Open source
  150. Open source software
  151. Opera
  152. Operating system
  153. Optical character recognition
  154. Optical disc
  155. output
  156. PageRank
  157. Password
  158. Pay-per-click
  159. PC speaker
  160. Peer-to-peer
  161. Pentium
  162. Peripheral
  163. Personal computer
  164. Personal digital assistant
  165. Phishing
  166. Pirated software
  167. Podcasting
  168. Pointing device
  169. POP3
  170. Programming language
  171. QuickTime
  172. Random access memory
  173. Routers
  174. Safari
  175. Scalability
  176. Scrollbar
  177. Scrolling
  178. Scroll wheel
  179. Search engine
  180. Security cracking
  181. Server
  182. Simple Mail Transfer Protocol
  183. Skype
  184. Social software
  185. Software bug
  186. Software cracker
  187. Software library
  188. Software utility
  189. Solaris Operating Environment
  190. Sound Blaster
  191. Soundcard
  192. Spam
  193. Spamdexing
  194. Spam in blogs
  195. Speech recognition
  196. Spoofing attack
  197. Spreadsheet
  198. Spyware
  199. Streaming media
  200. Supercomputer
  201. Tablet computer
  202. Telecommunications
  203. Text messaging
  204. Trackball
  205. Trojan horse
  206. TV card
  207. Unicode
  208. Uniform Resource Identifier
  209. Unix
  210. URL redirection
  211. USB flash drive
  212. USB port
  213. User interface
  214. Vlog
  215. Voice over IP
  216. Warez
  217. Wearable computer
  218. Web application
  219. Web banner
  220. Web browser
  221. Web crawler
  222. Web directories
  223. Web indexing
  224. Webmail
  225. Web page
  226. Website
  227. Wiki
  228. Wikipedia
  229. WIMP
  230. Windows CE
  231. Windows key
  232. Windows Media Player
  233. Windows Vista
  234. Word processor
  235. World Wide Web
  236. Worm
  237. XML
  238. X Window System
  239. Yahoo
  240. Zombie computer
 



MY COMPUTER
This article is from:
http://en.wikipedia.org/wiki/Computer_display

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Computer display

From Wikipedia, the free encyclopedia

 

A computer display is an interface between the computer and the operator. Although there are other interfaces (such as a printer) the main link to the operator is usually a CRT or TFT monitor. To connect the computer's output to the monitor, the video adapter converts the computers instructions to a form that tells the monitor what to display.

Cathode ray tube

The CRT or cathode ray tube, is the picture tube of a monitor. The back of the tube has a negatively charged cathode, or electron gun. The electron gun shoots electrons down the tube and onto a positively charged screen. The screen is coated with a pattern of red, green and blue phosphor dots that will glow when struck by the electron stream. Each cluster of three dots is one pixel (picture element).

The image on the monitor screen is made up from thousands of such tiny dots glowing on command from the computer. If the distance between pixels is too great, the picture will appear fuzzy, or grainy. The closer together the pixels are, the sharper the image on screen. The distance between pixels on a computer monitor screen is called its dot pitch and is measured in millimeters. Most monitors have a dot pitch of .28 mm or less.

There are two electromagnets (yokes) around the collar of the tube, which bend the beam of electrons. The beam scans (is bent) across the monitor from left to right and top to bottom to create, or draw the image, line by line. The number of times in one second that the electron gun redraws the entire image is called the refresh rate and is measured in hertz (Hz). If the scanning beam hits each line of pixels, in succession, on each pass, then the monitor is known as a non-interlaced monitor. The electron beam on an interlaced monitor scans the odd numbered lines on one pass, and then scans the even lines on the second pass. Interlaced Monitors are typically harder to look at, and have been attributed to eyestrain and nausea.

Imaging technologies

19" inch (48 cm) CRT computer monitor
19" inch (48 cm) CRT computer monitor

As with television, several different hardware technologies exist for displaying computer-generated output:

  • Liquid crystal display (LCD). (LCD-based monitors can receive television and computer protocols (SVGA, DVI, PAL, SECAM, NTSC). LCD displays are the most popular display device for new computers in North America.
  • Cathode ray tube (CRT)
    • Vector displays, as used on the Vectrex, many scientific and radar applications, and several early arcade machines (notably Asteroids (game) - always implemented using CRT displays due to requirement for a deflection system, though can be emulated on any raster-based display.
    • Television receivers were used by most early personal and home computers, connecting composite video to the television set using a modulator. Image quality was reduced by the additional steps of composite video → modulator → TV tuner → composite video.
  • Plasma display
  • Surface-conduction electron-emitter display (SED)
  • Video projector - implemented using LCD, CRT, or other technologies. Recent consumer-level video projectors are almost exclusively LCD based.
  • Organic light-emitting diode (OLED) display

Performance measurements

The performance parameters of a monitor are:

  • Luminance
  • Size
  • Dot pitch. In general, the lower the dot pitch (e.g. 0.24), the sharper the picture will rate.
  • V-sync rate
  • Response time
  • Refresh rate

Display resolutions

Main article: Display resolution

A modern CRT display has considerable flexibility: it can usually handle a range of resolutions from 320 by 200 up to 2560 by 2040 pixels.

Problems

Screen burn-in, where a static image left on the screen for a long time embeds the image into the phosphor that coats the screen, used to be an issue with CRT computer monitors and televisions. Screensavers, using moving images, prevent this happening. This problem is now found only at older ATM machines.

The other issue with computer monitors is that some monitors may have dead pixels, even when first purchased. The dead pixel does not glow when commanded to do so.

With exceptions of DLP, most display technologies (especially LCD) have an inherent misregistration of the color planes, that is, the centres of the red, green, and blue dots do not line up perfectly. Subpixel rendering depends on this misalignment; technologies making use of this include the Apple II from 1976 [1], and more recently Microsoft (ClearType, 1998) and XFree86 (X Rendering Extension).

Display interfaces

Computer Terminals

Main article: Computer terminal

Early CRT-based VDUs (Visual Display Units) such as the DEC VT05 without graphics capabilities gained the label glass teletypes, because of the functional similarity to their electromechanical predecessors.

Composite monitors

Early home computers such as the Apple II and the Commodore 64 used composite monitors. However, they are now used with video game consoles.

Digital monitors

Early digital monitors are sometimes known as TTLs because the voltages on the red, green, and blue inputs are compatible with TTL logic chips. Later digital monitors support LVDS, or TMDS protocols.

TTL monitors

IBM PC with green monochrome display
IBM PC with green monochrome display

Monitors used with the MDA, Hercules, CGA, and EGA graphics adapters used in early IBM Personal Computers and clones were controlled via TTL logic. Such monitors can usually be identified by a male DB-9 connector used on the video cable. The disadvantage of TTL monitors was the limited number of colors available due to the low number of digital bits used for video signaling.

TTL Monochrome monitors only made use of five out of the nine pins. One pin was used as a ground, and two pins were used for horizontal/vertical synchronization. The electron gun was controlled by two separate digital signals, a video bit, and an intensity bit to control the brightness of the drawn pixels. Only four unique shades were possible; black, dim, medium or bright.

CGA monitors used four digital signals to control the three electron guns used in color CRTs, in a signalling method known as RGBI, or Red Green and Blue, plus Intensity. Each of the three RGB colors can be switched on or off independently. The intensity bit increases the brightness of all guns that are switched on, or if no colors are switched on the intensity bit will switch on all guns at a very low brightness to produce a dark grey. A CGA monitor is only capable of rendering 16 unique colors. The CGA monitor was not exclusively used by PC based hardware. The Commodore 128 could also utilize CGA monitors. Many CGA monitors were capable of displaying composite video via a separate jack.

EGA monitors used six digital signals to control the three electron guns in a signalling method known as RrGgBb. Unlike CGA, each gun is allocated its own intensity bit. This allowed each of the three primary colors to have four different states (off, soft, medium, and bright) resulting in 64 possible colors.

Although not supported in the original IBM specification, many vendors of clone graphics adapters have implemented backwards monitor compatibility and auto detection. For example, EGA cards produced by Paradise could operate as a MDA, or CGA adapter if a monochrome or CGA monitor was used place of an EGA monitor. Many CGA cards were also capable of operating as MDA or Hercules card if a monochrome monitor was used.

Modern technology

Analog RGB monitors

Most modern computer displays can show thousands or millions of different colors in the RGB color space by varying red, green, and blue signals in continuously variable intensities.

Digital and analog combination

Many monitors have analog signal relay, but some more recent models (mostly LCD screens) support digital input signals. It is a common misconception that all computer monitors are digital. For several years, televisions, composite monitors, and computer displays have been significantly different. However, as TVs have become more versatile, the distinction has blurred.

Configuration and usage

Multi-head

Main article: Multi monitor

Some users use more than one monitor. The displays can operate in multiple modes. One of the most common spreads the entire desktop over all of the monitors, which thus act as one big desktop. The X Window System refers to this as Xinerama.

A monitor may also clone another monitor.

Two Apple flat-screen monitors used as dual display
Two Apple flat-screen monitors used as dual display

Terminology:

  • Dualhead - Using two monitors
  • Triplehead - using three monitors
  • Display assembly - multi-head configurations actively managed as a single unit

Virtual displays

The X Window System provides configuration mechanisms for using a single hardware monitor for rendering multiple virtual displays, as controlled (for example) with the Unix DISPLAY global variable or with the -display command option.

See also

  • Color calibration - used to calibrate a computer monitor or display.
  • Computer display standard
  • Screenless - computing without a display

Major manufacturers

  • AOC / TPV - Manufacture Monitors for major PC brands
  • Apple Computer
  • BenQ
  • Dell, Inc.
  • Eizo
  • HannsStar Display Corporation
  • Iiyama Corporation
  • LaCie
  • LG Electronics
  • NEC Display Solutions
  • Philips
  • Samsung
  • Sony
  • ViewSonic
Retrieved from "http://en.wikipedia.org/wiki/Computer_display"