- Great Painters
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
- Concept Cars
- Videogames
- The World of Sports

- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

- Education
- Masterpieces of English Literature
- American English

- English Dictionaries
- The English Language

- Medical Emergencies
- The Theory of Memory
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
- Batteries
- Nanotechnology
- Cosmetics
- Diets
- Vegetarianism and Veganism
- Christmas Traditions
- Animals

- Fruits And Vegetables


  1. Adobe Reader
  2. Adware
  3. Altavista
  4. AOL
  5. Apple Macintosh
  6. Application software
  7. Arrow key
  8. Artificial Intelligence
  9. ASCII
  10. Assembly language
  11. Automatic translation
  12. Avatar
  13. Babylon
  14. Bandwidth
  15. Bit
  16. BitTorrent
  17. Black hat
  18. Blog
  19. Bluetooth
  20. Bulletin board system
  21. Byte
  22. Cache memory
  23. Celeron
  24. Central processing unit
  25. Chat room
  26. Client
  27. Command line interface
  28. Compiler
  29. Computer
  30. Computer bus
  31. Computer card
  32. Computer display
  33. Computer file
  34. Computer games
  35. Computer graphics
  36. Computer hardware
  37. Computer keyboard
  38. Computer networking
  39. Computer printer
  40. Computer program
  41. Computer programmer
  42. Computer science
  43. Computer security
  44. Computer software
  45. Computer storage
  46. Computer system
  47. Computer terminal
  48. Computer virus
  49. Computing
  50. Conference call
  51. Context menu
  52. Creative commons
  53. Creative Commons License
  54. Creative Technology
  55. Cursor
  56. Data
  57. Database
  58. Data storage device
  59. Debuggers
  60. Demo
  61. Desktop computer
  62. Digital divide
  63. Discussion groups
  64. DNS server
  65. Domain name
  66. DOS
  67. Download
  68. Download manager
  69. DVD-ROM
  70. DVD-RW
  71. E-mail
  72. E-mail spam
  73. File Transfer Protocol
  74. Firewall
  75. Firmware
  76. Flash memory
  77. Floppy disk drive
  78. GNU
  79. GNU General Public License
  80. GNU Project
  81. Google
  82. Google AdWords
  83. Google bomb
  84. Graphics
  85. Graphics card
  86. Hacker
  87. Hacker culture
  88. Hard disk
  89. High-level programming language
  90. Home computer
  91. HTML
  92. Hyperlink
  93. IBM
  94. Image processing
  95. Image scanner
  96. Instant messaging
  97. Instruction
  98. Intel
  99. Intel Core 2
  100. Interface
  101. Internet
  102. Internet bot
  103. Internet Explorer
  104. Internet protocols
  105. Internet service provider
  106. Interoperability
  107. IP addresses
  108. IPod
  109. Joystick
  110. JPEG
  111. Keyword
  112. Laptop computer
  113. Linux
  114. Linux kernel
  115. Liquid crystal display
  116. List of file formats
  117. List of Google products
  118. Local area network
  119. Logitech
  120. Machine language
  121. Mac OS X
  122. Macromedia Flash
  123. Mainframe computer
  124. Malware
  125. Media center
  126. Media player
  127. Megabyte
  128. Microsoft
  129. Microsoft Windows
  130. Microsoft Word
  131. Mirror site
  132. Modem
  133. Motherboard
  134. Mouse
  135. Mouse pad
  136. Mozilla Firefox
  137. Mp3
  138. MPEG
  139. MPEG-4
  140. Multimedia
  141. Musical Instrument Digital Interface
  142. Netscape
  143. Network card
  144. News ticker
  145. Office suite
  146. Online auction
  147. Online chat
  148. Open Directory Project
  149. Open source
  150. Open source software
  151. Opera
  152. Operating system
  153. Optical character recognition
  154. Optical disc
  155. output
  156. PageRank
  157. Password
  158. Pay-per-click
  159. PC speaker
  160. Peer-to-peer
  161. Pentium
  162. Peripheral
  163. Personal computer
  164. Personal digital assistant
  165. Phishing
  166. Pirated software
  167. Podcasting
  168. Pointing device
  169. POP3
  170. Programming language
  171. QuickTime
  172. Random access memory
  173. Routers
  174. Safari
  175. Scalability
  176. Scrollbar
  177. Scrolling
  178. Scroll wheel
  179. Search engine
  180. Security cracking
  181. Server
  182. Simple Mail Transfer Protocol
  183. Skype
  184. Social software
  185. Software bug
  186. Software cracker
  187. Software library
  188. Software utility
  189. Solaris Operating Environment
  190. Sound Blaster
  191. Soundcard
  192. Spam
  193. Spamdexing
  194. Spam in blogs
  195. Speech recognition
  196. Spoofing attack
  197. Spreadsheet
  198. Spyware
  199. Streaming media
  200. Supercomputer
  201. Tablet computer
  202. Telecommunications
  203. Text messaging
  204. Trackball
  205. Trojan horse
  206. TV card
  207. Unicode
  208. Uniform Resource Identifier
  209. Unix
  210. URL redirection
  211. USB flash drive
  212. USB port
  213. User interface
  214. Vlog
  215. Voice over IP
  216. Warez
  217. Wearable computer
  218. Web application
  219. Web banner
  220. Web browser
  221. Web crawler
  222. Web directories
  223. Web indexing
  224. Webmail
  225. Web page
  226. Website
  227. Wiki
  228. Wikipedia
  229. WIMP
  230. Windows CE
  231. Windows key
  232. Windows Media Player
  233. Windows Vista
  234. Word processor
  235. World Wide Web
  236. Worm
  237. XML
  238. X Window System
  239. Yahoo
  240. Zombie computer

This article is from:

All text is available under the terms of the GNU Free Documentation License: 

Artificial intelligence

From Wikipedia, the free encyclopedia

(Redirected from Artificial Intelligence)
Honda's humanoid robot
Honda's humanoid robot

Artificial intelligence (AI) can be defined as intelligence exhibited by an artificial (non-natural, manufactured) entity. AI is studied in overlapping fields of computer science, psychology and engineering, dealing with intelligent behavior, learning and adaptation in machines, generally assumed to be computers.

Research in AI is concerned with producing machines to automate tasks requiring intelligent behavior. Examples include control, planning and scheduling, the ability to answer diagnostic and consumer questions, handwriting, speech, and facial recognition. As such, the study of AI has also become an engineering discipline, focused on providing solutions to real life problems, software applications, traditional strategy games like computer chess and other video games.

For topics relating specifically to full human-like intelligence, see Strong AI.

Schools of thought

AI divides roughly into two schools of thought: Conventional AI and Computational Intelligence (CI)[citation needed].

Conventional AI mostly involves methods now classified as machine learning, characterized by formalism and statistical analysis. This is also known as symbolic AI, logical AI, neat AI and Good Old Fashioned Artificial Intelligence (GOFAI). (Also see semantics.) Methods include:

  • Expert systems: apply reasoning capabilities to reach a conclusion. An expert system can process large amounts of known information and provide conclusions based on them.
  • Case based reasoning
  • Bayesian networks
  • Behavior based AI: a modular method building AI systems by hand.

Computational Intelligence involves iterative development or learning (e.g. parameter tuning e.g. in connectionist systems). Learning is based on empirical data and is associated with non-symbolic AI, scruffy AI and soft computing. Methods mainly include:

  • Neural networks: systems with very strong pattern recognition capabilities.
  • Fuzzy systems: techniques for reasoning under uncertainty, have been widely used in modern industrial and consumer product control systems.
  • Evolutionary computation: applies biologically inspired concepts such as populations, mutation and survival of the fittest to generate increasingly better solutions to the problem. These methods most notably divide into evolutionary algorithms (e.g. genetic algorithms) and swarm intelligence (e.g. ant algorithms).

With hybrid intelligent systems attempts are made to combine these two groups. Expert inference rules can be generated through neural network or production rules from statistical learning such as in ACT-R. It is thought that the human brain uses multiple techniques to both formulate and cross-check results. Thus, systems integration is seen as promising and perhaps necessary for true AI.


Main article: History of artificial intelligence

Early in the 17th century, René Descartes envisioned the bodies of animals as complex but reducible machines, thus formulating the mechanistic theory, also known as the "clockwork paradigm". Wilhelm Schickard created the first mechanical digital calculating machine in 1623, followed by machines of Blaise Pascal (1643) and Gottfried Wilhelm von Leibniz (1671), who also invented the binary system. In the 19th century, Charles Babbage and Ada Lovelace worked on programmable mechanical calculating machines.

Bertrand Russell and Alfred North Whitehead published Principia Mathematica in 1910-1913, which revolutionized formal logic. In 1931 Kurt Gödel showed that sufficiently powerful consistent formal systems contain true theorems unprovable by any theorem-proving AI that is systematically deriving all possible theorems from the axioms. In 1941 Konrad Zuse built the first working program-controlled computers. Warren McCulloch and Walter Pitts published A Logical Calculus of the Ideas Immanent in Nervous Activity (1943), laying the foundations for neural networks. Norbert Wiener's Cybernetics or Control and Communication in the Animal and the Machine (MIT Press, 1948) popularizes the term "cybernetics".



The 1950s were a period of active efforts in AI. In 1950, Alan Turing introduced the "Turing test" as a way of operationalizing a test of intelligent behavior. The first working AI programs were written in 1951 to run on the Ferranti Mark I machine of the University of Manchester: a draughts-playing program written by Christopher Strachey and a chess-playing program written by Dietrich Prinz. John McCarthy coined the term "artificial intelligence" at the first conference devoted to the subject, in 1956. He also invented the Lisp programming language. Joseph Weizenbaum built ELIZA, a chatterbot implementing Rogerian psychotherapy. The birthdate of AI is generally considered to be July 1956 at the Dartmouth Conference, where many of these people met and exchanged ideas.

At the same time, John von Neumann, who had been hired by the RAND Corporation, developed the game theory, which would prove invaluable in the progress of AI research.



During the 1960s and 1970s, Joel Moses demonstrated the power of symbolic reasoning for integration problems in the Macsyma program, the first successful knowledge-based program in mathematics. Leonard Uhr and Charles Vossler published "A Pattern Recognition Program That Generates, Evaluates, and Adjusts Its Own Operators" in 1963, which described one of the first machine learning programs that could adaptively acquire and modify features and thereby overcome the limitations of simple perceptrons of Rosenblatt. Marvin Minsky and Seymour Papert published Perceptrons, which demonstrated the limits of simple neural nets. Alain Colmerauer developed the Prolog computer language. Ted Shortliffe demonstrated the power of rule-based systems for knowledge representation and inference in medical diagnosis and therapy in what is sometimes called the first expert system. Hans Moravec developed the first computer-controlled vehicle to autonomously negotiate cluttered obstacle courses.



In the 1980s, neural networks became widely used due to the backpropagation algorithm, first described by Paul Werbos in 1974. The team of Ernst Dickmanns built the first robot cars, driving up to 55 mph on empty streets.


1990s & Turn of the Century

The 1990s marked major achievements in many areas of AI and demonstrations of various applications. In 1995, one of Dickmanns' robot cars drove more than 1000 miles in traffic at up to 110 mph. Deep Blue, a chess-playing computer, beat Garry Kasparov in a famous six-game match in 1997. DARPA stated that the costs saved by implementing AI methods for scheduling units in the first Persian Gulf War have repaid the US government's entire investment in AI research since the 1950s. Honda built the first prototypes of humanoid robots like the one depicted above.

During the 1990s and 2000s AI has become very influenced by probability theory and statistics. Bayesian networks are the focus of this movement, providing links to more rigorous topics in statistics and engineering such as Markov models and Kalman filters, and bridging the divide between `neat' and `scruffy' approaches. The last few years have also seen a big interest in game theory applied to AI decision making. This new school of AI is sometimes called `machine learning'. After the September 11, 2001 attacks there has been much renewed interest and funding for threat-detection AI systems, including machine vision research and data-mining. However despite the hype, excitment about Bayesian AI is perhaps now fading again as successful Bayesian models have only appeared for tiny statistical tasks (such as finding principal components probabilistically) and appear to be intractable for general perception and decision making.

Challenge & Prize

The DARPA Grand Challenge is a race for a $2 million prize where cars drive themselves across several hundred miles of challenging desert terrain without any communication with humans, using GPS, computers and a sophisticated array of sensors. In 2005 the winning vehicles completed all 132 miles of the course in just under 7 hours. Unfortunately, there will be no prize money awarded to the winners of the 2007 race due to a re-allocation of DARPA funds through a bill signed by George W. Bush in which Congress switched the authority from DARPA to its boss, the Director of Defense Engineering and Research. [1]

In the post-dot com boom era, some search engine websites such have sprung using a simple form of AI to provide answers to questions by entered by the visitor. Questions such as "What is the tallest building?" Can be entered into the search engine's input form and a list of answers will be returned.

AI in Philosophy

Main article: Philosophy of artificial intelligence

The strong AI vs. weak AI debate ("can a man-made artifact be conscious?") is still a hot topic amongst AI philosophers. This involves philosophy of mind and the mind-body problem. Most notably Roger Penrose in his book The Emperor's New Mind and John Searle with his "Chinese room" thought experiment argue that true consciousness cannot be achieved by formal logic systems, while Douglas Hofstadter in Gödel, Escher, Bach and Daniel Dennett in Consciousness Explained argue in favour of functionalism. In many strong AI supporters’ opinion, artificial consciousness is considered as the holy grail of artificial intelligence. Edsger Dijkstra famously opined that the debate had little importance: "The question of whether a computer can think is no more interesting than the question of whether a submarine can swim."

Epistemology, the study of knowledge, also makes contact with AI, as engineers find themselves debating similar questions to philosophers about how best to represent and use knowledge and information. (e.g. semantic networks).

AI in business

Banks use artificial intelligence systems to organize operations, invest in stocks, and manage properties. In August 2001, robots beat humans in a simulated financial trading competition (BBC News, 2001).[1] A medical clinic can use artificial intelligence systems to organize bed schedules, make a staff rotation, and to provide medical information. Many practical applications are dependent on artificial neural networks — networks that pattern their organization in mimicry of a brain's neurons, which have been found to excel in pattern recognition. Financial institutions have long used such systems to detect charges or claims outside of the norm, flagging these for human investigation. Neural networks are also being widely deployed in homeland security, speech and text recognition, medical diagnosis (such as in Concept Processing technology in EMR software), data mining, and e-mail spam filtering.

Robots have become common in many industries. They are often given jobs that are considered dangerous to humans. Robots have proven effective in jobs that are very repetitive which may lead to mistakes or accidents due to a lapse in concentration, and other jobs which humans may find degrading. General Motors uses around 16,000 robots for tasks such as painting, welding, and assembly. Japan is the leader in using robots in the world. In 1995, 700,000 robots were in use worldwide; over 500,000 of which were from Japan (Encarta, 2006).

AI in fiction

In science fiction AI — almost always strong AI — is commonly portrayed as an upcoming power trying to overthrow human authority as in HAL 9000, Skynet, Colossus and The Matrix or as service humanoids like C-3PO, Marvin, Data, KITT and KARR, the Bicentennial Man, the Mechas in A.I., Cortana from the Halo series or Sonny in I, Robot.

A notable exception is Mike in Robert A. Heinlein's The Moon Is a Harsh Mistress: a supercomputer that becomes aware and aids in a local revolution.

The inevitability of world domination by out-of-control AI is also argued by some fiction writers like Kevin Warwick. In works such as the Japanese manga Ghost in the Shell, the existence of intelligent machines questions the definition of life as organisms rather than a broader category of autonomous entities, establishing a notional concept of systemic intelligence. See list of fictional computers and list of fictional robots and androids.

Some fiction writers, such as Vernor Vinge and Ray Kurzweil, have also speculated that the advent of strong AI is likely to cause abrupt and dramatic societal change. The period of abrupt change is sometimes referred to as "the Singularity".

Author Frank Herbert explored the idea of a time when mankind might ban clever machines entirely. His Dune series makes mention of a rebellion called the Butlerian Jihad in which mankind defeats the smart machines of the future and then imposes a death penalty against any who would again create thinking machines. Often quoted from the fictional Orange Catholic Bible, "Thou shalt not make a machine in the likeness of a human mind."

See also

  • American Association for Artificial Intelligence
  • Artificial artificial intelligence
  • AI effect
  • AI winter
  • A.I. Systems Integration
  • Biosynthetic phylogeny
  • Cognitive science
  • Fifth generation computer
  • German Research Centre for Artificial Intelligence
  • History of artificial intelligence
  • Intelligent interface
  • International Joint Conference on Artificial Intelligence
  • Loebner Prize
  • Neuromancer
  • PEAS
  • Predictive analytics
  • Robotics
  • Three Laws of Robotics


Typical problems to which AI methods are applied:

  • Pattern recognition
    • Optical character recognition
    • Handwriting recognition
    • Speech recognition
    • Face recognition
  • Artificial Creativity
  • Computer vision, Virtual reality and Image processing
  • Diagnosis
  • Game theory and Strategic planning
  • Game AI and Computer game bot
  • Natural language processing, Translation and Chatterbots
  • Non-linear control and Robotics

Other fields in which AI methods are implemented:

  • Artificial life
  • Automated reasoning
  • Automation
  • Behavior-based robotics
  • Bio-inspired computing
  • Chatterbot
  • Cognitive robotics
  • Colloquis
  • Concept Mining
  • Cybernetics
  • Data mining
  • Developmental robotics
  • Epigenetic robotics
  • E-mail spam filtering
  • Evolutionary robotics
  • Hybrid intelligent system
  • Intelligent agent
  • Intelligent control
  • Knowledge Representation
  • Knowledge Acquisition
  • Semantic web

Lists of researchers, projects & publications

  • List of AI researchers
  • List of AI projects
  • List of important AI publications


  1. ^ Robots beat humans in trading battle. BBC News, Business. The British Broadcasting Corporation (August 8, 2001). Retrieved on 2006-11-02.
  • Cummings, Maeve. McCubbrey J, Donald. Pinsonneault, Alain. Donovan, Richard. Management Information Systems for the Information Age. Third Canadian Edition. Canada. McGraw-Hill, 2006.

External links

Wikibooks has more about this subject:
Artificial Intelligence
  • AI overview.
  • Intelligent Interface.
  • Podcast 'Talking Robots' - interviews with high-profile professionals in Robotics and Artificial Intelligence
  • Freeview Video 'Machines with Minds' by the Vega Science Trust and the BBC/OU
  • John McCarthy's frequently asked questions about AI
  • Ray Kurzweil's website dedicated to AI including prediction of future development in AI
  • AI history & outlook by Jürgen Schmidhuber
  • Artificial Intelligence in Manufacturing
  • Heuristics and artificial intelligence in finance and investment
  • Google Users Promised Artificial Intelligence
  • 50th Anniversary Summit of Artificial Intelligence 9-14 July 2006 Monte Verita Switzerland
  • Research Group Synthetic Intelligence, Europe
  • Speak with A.L.I.C.E. : An award winning AI chat robot
  • The AI newsgroup
  • Documentary film with and about Joseph Weizenbaum and ELIZA. ( "Weizenbaum. Rebel at Work." )
  • NASA Ames Research Center's Intelligent Systems Division
  • Institute for Intelligent Systems
  • "Hello, Are You Human?" Cocktail hour inversion of the Turing Test
  •, an online organization for people building large scale A.I. systems.
  • AI Topics
  • Take a 5-minute online Turing Test
  • Chat with George and Joan, winners of the last 2 Loebner Prizes
  • Chatbot Hub is a community site with news, downloads, and links about Artificial Intelligence
Retrieved from ""