BENVENUTI IN   TUTTE LE LINGUE, CON CURA

SEZIONE
INGLESE

RIVISTA WIKIMAG
11 riviste piene di articoli interessanti!

WIKIMAG è una serie di 11 riviste che abbiamo realizzato per te nei mesi scorsi scegliendo da Wikipedia un certo numero di articoli enciclopedici legati all'attualità e con cui ti offriamo uno stimolo ad avvicinarti all'inglese più accademico (tecnico, scientifico, politico, culturale). Come aiuto potrai beneficiare su queste pagine della guida alla pronuncia di ReadSpeaker, del dizionario di Babylon integrato e del traduttore automatico interattivo di Google Translate. Quest'ultimo funziona così: basta selezionare del testo e la traduzione italiana comparirà istantaneamente in una finestrella. Ovviamente, trattandosi di una traduzione automatica, ci potrebbero essere delle imprecisioni ma il punto è che nel 90% dei casi avrai un aiuto concreto che ti eviterà di dover perder del tempo a cercare la parola nel dizionario!
                                                       VAI ALLA RIVISTA NUMERO: 

TORNA AL PALINSESTO
Il palinsesto è l'elenco di tutte le risorse disponibili in ELINGUE

Indice del n. 1

  1. Imagine
  2. 2012 UN Climate Change Conference
  3. Mohamed Morsi
  4. Dave Brubeck
  5. Oscar Niemeyer
  6. Mario Monti
  7. English grammar
  8. English irregular verbs
  9. Italian cuisine
  10. Windows 8
  11. OS X Mountain Lion
  12. Ford Fiesta
  13. Armenian genocide
  14. Turkish delight
  15. Tax and taxation
  16. Alpaca
  17. Jet lag
  18. Hypnosis
  19. Luigi Pirandello
  20. Advanced Encryption Standard
  21. Classified information
  22. Opera
  23. Digital cinema
  24. Pickpocketing
  25. Black Friday
  26. Avatar
  27. Project Gutenberg
  28. Fair use
  29. Twitter
  30. Google Street View
  31. Panettone
  32. White Christmas (song)
  33. Minstrel show
  34. List of sovereign states
  35. Barack Obama
  36. Oxfam
  37. Paradiplomacy
  38. Public domain
  39. 3D film
  40. Microsoft Surface
  41. Twin towns and sister cities
  42. Cosmopolitan (magazine)
  43. List of political parties in Italy
  44. Quantitative easing
  45. Electronic voting
  46. Amitabh Bachchan
  47. Downton Abbey
  48. Noble Prize controversies
  49. Circus
  50. David Cameron

 


WIKIMAG n. 1 - Dicembre 2012 
Advanced Encryption Standard

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
Traduzione interattiva on/off - Togli il segno di spunta per disattivarla



The SubBytes step, one of four stages in a round of AES
General
Designers Vincent Rijmen, Joan Daemen
First published 1998
Derived from Square
Successors Anubis, Grand Cru
Certification AES winner, CRYPTREC, NESSIE, NSA
Cipher detail
Key sizes 128, 192 or 256 bits[1]
Block sizes 128 bits[2]
Structure Substitution-permutation network
Rounds 10, 12 or 14 (depending on key size)
Best public cryptanalysis
All known attacks are computationally infeasible. For AES-128, the key can be recovered with a computational complexity of 2126.1 using bicliques. For biclique attacks on AES-192 and AES-256, the computational complexities of 2189.7 and 2254.4 respectively apply. Related-key attacks can break AES-192 and AES-256 with complexities 2176 and 299.5, respectively.

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.[3] Originally called Rijndael, the cipher was developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted to the AES selection process.[4]

AES has been adopted by the U.S. government and is now used worldwide. It supersedes the Data Encryption Standard (DES),[5] which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.

In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on November 26, 2001.[3] This announcement followed a five-year standardization process in which fifteen competing designs were presented and evaluated, before the Rijndael cipher was selected as the most suitable (see Advanced Encryption Standard process for more details). It became effective as a federal government standard on May 26, 2002 after approval by the Secretary of Commerce. AES is included in the ISO/IEC 18033-3 standard. AES is available in many different encryption packages, and is the first publicly accessible and open cipher approved by the National Security Agency (NSA) for top secret information when used in an NSA approved cryptographic module (see Security of AES, below).

The name Rijndael (Dutch pronunciation: [ˈrɛindaːl]) is a play on the names of the two inventors. Strictly speaking, the AES standard is a variant of Rijndael where the block size is restricted to 128 bits.

Contents

Description of the cipher

AES is based on a design principle known as a substitution-permutation network, and is fast in both software and hardware.[6] Unlike its predecessor DES, AES does not use a Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the state, although some versions of Rijndael have a larger block size and have additional columns in the state. Most AES calculations are done in a special finite field.

The key size used for an AES cipher specifies the number of repetitions of transformation rounds that convert the input, called the plaintext, into the final output, called the ciphertext. The number of cycles of repetition are as follows:

  • 10 cycles of repetition for 128-bit keys.
  • 12 cycles of repetition for 192-bit keys.
  • 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, including one that depends on the encryption key itself. A set of reverse rounds are applied to transform ciphertext back into the original plaintext using the same encryption key.

High-level description of the algorithm

  1. KeyExpansion—round keys are derived from the cipher key using Rijndael's key schedule
  2. Initial Round
    1. AddRoundKey—each byte of the state is combined with the round key using bitwise xor
  3. Rounds
    1. SubBytes—a non-linear substitution step where each byte is replaced with another according to a lookup table.
    2. ShiftRows—a transposition step where each row of the state is shifted cyclically a certain number of steps.
    3. MixColumns—a mixing operation which operates on the columns of the state, combining the four bytes in each column.
    4. AddRoundKey
  4. Final Round (no MixColumns)
    1. SubBytes
    2. ShiftRows
    3. AddRoundKey

The SubBytes step

In the SubBytes step, each byte in the state is replaced with its entry in a fixed 8-bit lookup table, S; bij = S(aij).

In the SubBytes step, each byte in the state matrix is replaced with a SubByte using an 8-bit substitution box, the Rijndael S-box. This operation provides the non-linearity in the cipher. The S-box used is derived from the multiplicative inverse over GF(28), known to have good non-linearity properties. To avoid attacks based on simple algebraic properties, the S-box is constructed by combining the inverse function with an invertible affine transformation. The S-box is also chosen to avoid any fixed points (and so is a derangement), and also any opposite fixed points.

The ShiftRows step

In the ShiftRows step, bytes in each row of the state are shifted cyclically to the left. The number of places each byte is shifted differs for each row.

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two and three respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is the same. Row n is shifted left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step is composed of bytes from each column of the input state. (Rijndael variants with a larger block size have slightly different offsets). For a 256-bit block, the first row is unchanged and the shifting for the second, third and fourth row is 1 byte, 3 bytes and 4 bytes respectively—this change only applies for the Rijndael cipher when used with a 256-bit block, as AES does not use 256-bit blocks.

The MixColumns step

In the MixColumns step, each column of the state is multiplied with a fixed polynomial c(x).

In the MixColumns step, the four bytes of each column of the state are combined using an invertible linear transformation. The MixColumns function takes four bytes as input and outputs four bytes, where each input byte affects all four output bytes. Together with ShiftRows, MixColumns provides diffusion in the cipher.

During this operation, each column is multiplied by the known matrix that for the 128-bit key is


\begin{bmatrix}
2 & 3 & 1 & 1 \\
1 & 2 & 3 & 1 \\
1 & 1 & 2 & 3 \\
3 & 1 & 1 & 2
\end{bmatrix}.

The multiplication operation is defined as: multiplication by 1 means no change, multiplication by 2 means shifting to the left, and multiplication by 3 means shifting to the left and then performing xor with the initial unshifted value. After shifting, a conditional xor with 0x11B should be performed if the shifted value is larger than 0xFF.

In more general sense, each column is treated as a polynomial over GF(28) and is then multiplied modulo x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 0x02. The coefficients are displayed in their hexadecimal equivalent of the binary representation of bit polynomials from GF(2)[x]. The MixColumns step can also be viewed as a multiplication by a particular MDS matrix in a finite field. This process is described further in the article Rijndael mix columns.

The AddRoundKey step

In the AddRoundKey step, each byte of the state is combined with a byte of the round subkey using the XOR operation (⊕).

In the AddRoundKey step, the subkey is combined with the state. For each round, a subkey is derived from the main key using Rijndael's key schedule; each subkey is the same size as the state. The subkey is added by combining each byte of the state with the corresponding byte of the subkey using bitwise XOR.

Optimization of the cipher

On systems with 32-bit or larger words, it is possible to speed up execution of this cipher by combining the SubBytes and ShiftRows steps with the MixColumns step by transforming them into a sequence of table lookups. This requires four 256-entry 32-bit tables, and utilizes a total of four kilobytes (4096 bytes) of memory — one kilobyte for each table. A round can then be done with 16 table lookups and 12 32-bit exclusive-or operations, followed by four 32-bit exclusive-or operations in the AddRoundKey step.[7]

If the resulting four kilobyte table size is too large for a given target platform, the table lookup operation can be performed with a single 256-entry 32-bit (i.e. 1 kilobyte) table by the use of circular rotates.

Using a byte-oriented approach, it is possible to combine the SubBytes, ShiftRows, and MixColumns steps into a single round operation.[8]

Security

Until May 2009, the only successful published attacks against the full AES were side-channel attacks on some specific implementations. The National Security Agency (NSA) reviewed all the AES finalists, including Rijndael, and stated that all of them were secure enough for U.S. Government non-classified data. In June 2003, the U.S. Government announced that AES could be used to protect classified information:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use."[9]

AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. By 2006, the best known attacks were on 7 rounds for 128-bit keys, 8 rounds for 192-bit keys, and 9 rounds for 256-bit keys.[10]

Known attacks

For cryptographers, a cryptographic "break" is anything faster than a brute force—performing one trial decryption for each key (see Cryptanalysis). This includes results that are infeasible with current technology. The largest successful publicly known brute force attack against any block-cipher encryption was against a 64-bit RC5 key by distributed.net in 2006.[11]

AES has a fairly simple algebraic description.[12] In 2002, a theoretical attack, termed the "XSL attack", was announced by Nicolas Courtois and Josef Pieprzyk, purporting to show a weakness in the AES algorithm due to its simple description.[13] Since then, other papers have shown that the attack as originally presented is unworkable; see XSL attack on block ciphers.

During the AES process, developers of competing algorithms wrote of Rijndael, "...we are concerned about [its] use...in security-critical applications."[14] However, in October 2000 at the end of the AES selection process in, Bruce Schneier, a developer of the competing algorithm Twofish, wrote that while he thought successful academic attacks on Rijndael would be developed someday, "I do not believe that anyone will ever discover an attack that will allow someone to read Rijndael traffic."[15]

On July 1, 2009, Bruce Schneier blogged[16] about a related-key attack on the 192-bit and 256-bit versions of AES, discovered by Alex Biryukov and Dmitry Khovratovich,[17] which exploits AES's somewhat simple key schedule and has a complexity of 2119. In December 2009 it was improved to 299.5. This is a follow-up to an attack discovered earlier in 2009 by Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić, with a complexity of 296 for one out of every 235 keys.[18]

Another attack was blogged by Bruce Schneier[19] on July 30, 2009 and released as a preprint[20] on August 3, 2009. This new attack, by Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir, is against AES-256 that uses only two related keys and 239 time to recover the complete 256-bit key of a 9-round version, or 245 time for a 10-round version with a stronger type of related subkey attack, or 270 time for an 11-round version. 256-bit AES uses 14 rounds, so these attacks aren't effective against full AES.

In November 2009, the first known-key distinguishing attack against a reduced 8-round version of AES-128 was released as a preprint.[21] This known-key distinguishing attack is an improvement of the rebound or the start-from-the-middle attacks for AES-like permutations, which view two consecutive rounds of permutation as the application of a so-called Super-Sbox. It works on the 8-round version of AES-128, with a time complexity of 248, and a memory complexity of 232.

In July 2010 Vincent Rijmen published an ironic paper on "chosen-key-relations-in-the-middle" attacks on AES-128.[22]

The first key-recovery attacks on full AES were due to Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger, and were published in 2011.[23] The attack is based on bicliques and is faster than brute force by a factor of about four. It requires 2126.1 operations to recover an AES-128 key. For AES-192 and AES-256, 2189.7 and 2254.4 operations are needed, respectively.

Side-channel attacks

Side-channel attacks do not attack the underlying cipher and so have nothing to do with its security as described here, but attack implementations of the cipher on systems which inadvertently leak data. There are several such known attacks on certain implementations of AES.

In April 2005, D.J. Bernstein announced a cache-timing attack that he used to break a custom server that used OpenSSL's AES encryption.[24] The attack required over 200 million chosen plaintexts.[25] The custom server was designed to give out as much timing information as possible (the server reports back the number of machine cycles taken by the encryption operation); however, as Bernstein pointed out, "reducing the precision of the server's timestamps, or eliminating them from the server's responses, does not stop the attack: the client simply uses round-trip timings based on its local clock, and compensates for the increased noise by averaging over a larger number of samples." [24]

In October 2005, Dag Arne Osvik, Adi Shamir and Eran Tromer presented a paper demonstrating several cache-timing attacks against AES.[26] One attack was able to obtain an entire AES key after only 800 operations triggering encryptions, in a total of 65 milliseconds. This attack requires the attacker to be able to run programs on the same system or platform that is performing AES.

In December 2009 an attack on some hardware implementations was published that used differential fault analysis and allows recovery of a key with a complexity of 232.[27]

In November 2010 Endre Bangerter, David Gullasch and Stephan Krenn published a paper which described a practical approach to a "near real time" recovery of secret keys from AES-128 without the need for either cipher text or plaintext. The approach also works on AES-128 implementations that use compression tables, such as OpenSSL.[28] Like some earlier attacks this one requires the ability to run unprivileged code on the system performing the AES encryption, which may be achieved by malware infection far more easily than commandeering the root account.[29]

NIST/CSEC validation

The Cryptographic Module Validation Program (CMVP) is operated jointly by the United States Government's National Institute of Standards and Technology (NIST) Computer Security Division and the Communications Security Establishment (CSE) of the Government of Canada. The use of cryptographic modules validated to NIST FIPS 140-2 is required by the United States Government for encryption of all data that has a classification of Sensitive but Unclassified (SBU) or above. From NSTISSP #11, National Policy Governing the Acquisition of Information Assurance: "Encryption products for protecting classified information will be certified by NSA, and encryption products intended for protecting sensitive information will be certified in accordance with NIST FIPS 140-2." [30]

The Government of Canada also recommends the use of FIPS 140 validated cryptographic modules in unclassified applications of its departments.

Although NIST publication 197 ("FIPS 197") is the unique document that covers the AES algorithm, vendors typically approach the CMVP under FIPS 140 and ask to have several algorithms (such as Triple DES or SHA1) validated at the same time. Therefore, it is rare to find cryptographic modules that are uniquely FIPS 197 validated and NIST itself does not generally take the time to list FIPS 197 validated modules separately on its public web site. Instead, FIPS 197 validation is typically just listed as an "FIPS approved: AES" notation (with a specific FIPS 197 certificate number) in the current list of FIPS 140 validated cryptographic modules.

The Cryptographic Algorithm Validation Program (CAVP)[31] allows for independent validation of the correct implementation of the AES algorithm at a reasonable cost[citation needed]. Successful validation results in being listed on the NIST validations page. This testing is a pre-requisite for the FIPS 140-2 module validation described below. However, successful CAVP validation in no way implies that the cryptographic module implementing the algorithm is secure. Lacking FIPS 140-2 validation or specific approval by the NSA, a cryptographic module is not deemed secure by the US Government and cannot be used to protect government data.[30]

FIPS 140-2 validation is challenging to achieve both technically and fiscally.[32] There is a standardized battery of tests as well as an element of source code review that must be passed over a period of a few weeks. The cost to perform these tests through an approved laboratory can be significant (e.g., well over $30,000 US)[32] and does not include the time it takes to write, test, document and prepare a module for validation. After validation, modules must be re-submitted and re-evaluated if they are changed in any way. This can vary from simple paperwork updates if the security functionality did not change to a more substantial set of re-testing if the security functionality was impacted by the change.

Test vectors

Test vectors are a set of known ciphers for a given input and key. NIST distributes the reference of AES test vectors as AES Known Answer Test (KAT) Vectors (in ZIP format).

Performance

High speed and low RAM requirements were criteria of the AES selection process. Thus AES performs well on a wide variety of hardware, from 8-bit smart cards to high-performance computers.

On a Pentium Pro, AES encryption requires 18 clock cycles / byte,[33] equivalent to a throughput of about 11 MiB/s for a 200 MHz processor. On a Pentium M 1.7 GHz throughput is about 60 MiB/s.

On Intel i5/i7 CPUs supporting AES-NI instruction set extensions throughput is about 400MiB/s per thread.[citation needed]


 








DA INGLESE A ITALIANO
Inserire nella casella Traduci la parola INGLESE e cliccare Go.
 DA ITALIANO A INGLESE 
Impostare INGLESE anziché italiano e ripetere la procedura descritta.

 

 
 

 
CONDIZIONI DI USO DI QUESTO SITO
agg. 13.12.12
L'utente può utilizzare il sito ELINGUE solo se comprende e accetta quanto segue:

  • le risorse e i servizi linguistici presentati all'interno della cartella di sito denominata ELINGUE (www.englishgratis.com/elingue) , d'ora in poi definita "ELINGUE", sono accessibili solo previa sottoscrizione di un abbonamento a pagamento e si possono utilizzare esclusivamente per uso personale e non commerciale con tassativa esclusione di ogni condivisione comunque effettuata. Tutti i diritti sono riservati. La riproduzione anche parziale è vietata senza autorizzazione scritta.
  • si precisa altresì che il nome del sito EnglishGratis, che ospita ELINGUE, è esclusivamente un marchio di fantasia e un nome di dominio internet che fa riferimento alla disponibilità sul sito di un numero molto elevato di risorse gratuite e non implica dunque in alcun modo una promessa di gratuità relativamente a prodotti e servizi nostri o di terze parti pubblicizzati a mezzo banner e link, o contrassegnati chiaramente come prodotti a pagamento (anche ma non solo con la menzione "Annuncio pubblicitario"), o comunque menzionati nelle pagine del sito ma non disponibili sulle pagine pubbliche, non protette da password, del sito stesso. In particolare sono esclusi dalle pretese di gratuità i seguenti prodotti a pagamento: il nuovo abbonamento ad ELINGUE, i corsi 20 ORE e le riviste English4Life. L'utente che abbia difficoltà a capire il significato del marchio English Gratis o la relazione tra risorse gratuite e risorse a pagamento è pregato di contattarci per le opportune delucidazioni PRIMA DI UTILIZZARE IL SITO onde evitare spiacevoli equivoci.
  • ELINGUE è riservato in linea di massima ad utenti singoli (privati o aziendali). Qualora si sia interessati ad abbonamenti multi-utente si prega di contattare la redazione per un'offerta ad hoc.
  • l'utente si impegna a non rivelare a nessuno i dati di accesso che gli verranno comunicati (nome utente e password)
  • coloro che si abbonano accettano di ricevere le nostre comunicazioni di servizio (newsletter e mail singole) che sono l'unico tramite di comunicazione tra noi e il nostro abbonato, e servono ad informare l'abbonato della scadenza imminente del suo abbonamento e a comunicargli in anticipo eventuali problematiche tecniche e di manutenzione che potrebbero comportare l'indisponibilità transitoria del sito.
  • Nel quadro di una totale trasparenza e cortesia verso l'utente, l'abbonamento NON si rinnova automaticamente. Per riabbonarsi l'utente dovrà di nuovo effettuare la procedura che ha dovuto compiere la prima volta che si è abbonato.
  • Le risorse costituite da codici di embed di YouTube e di altri siti che incoraggiano lo sharing delle loro risorse (video, libri, audio, immagini, foto ecc.) sono ovviamente di proprietà dei rispettivi siti. L'utente riconosce e accetta che 1) il sito di sharing che ce ne consente l'uso può in ogni momento revocare la disponibilità della risorsa 2) l'eventuale pubblicità che figura all'interno delle risorse non è inserita da noi ma dal sito di sharing 3) eventuali violazioni di copyright sono esclusiva responsabilità del sito di sharing mentre è ovviamente nostra cura scegliere risorse solo da siti di sharing che pratichino una politica rigorosa di controllo e interdizione delle violazioni di copyright.
  • Nel caso l'utente riscontri nel sito una qualsiasi violazione di copyright, è pregato di segnalarcelo immediatamente per consentirci interventi di verifica ed eventuale rimozione del contenuto in questione. I contenuti rimossi saranno, nel limite del possibile, sostituiti con altri contenuti analoghi che non violano il copyright.
  • I servizi linguistici da noi forniti sulle pagine del sito ma erogati da aziende esterne (per esempio, la traduzione interattiva di Google Translate e Bing Translate realizzata rispettivamente da Google e da Microsoft, la vocalizzazione Text To Speech dei testi inglesi fornita da ReadSpeaker, il vocabolario inglese-italiano offerto da Babylon con la sua Babylon Box, il servizio di commenti sociali DISQUS e altri) sono ovviamente responsabilità di queste aziende esterne. Trattandosi di servizi interattivi basati su web, possono esserci delle interruzioni di servizio in relazione ad eventi di manutenzione o di sovraccarico dei server su cui non abbiamo alcun modo di influire. Per esperienza, comunque, tali interruzioni sono rare e di brevissima durata, saremo comunque grati ai nostri utenti che ce le vorranno segnalare.
  • Per quanto riguarda i servizi di traduzione automatica l'utente prende atto che sono forniti "as is" dall'azienda esterna che ce li eroga (Google o Microsoft). Nonostante le ovvie limitazioni, sono strumenti in continuo perfezionamento e sono spesso in grado di fornire all'utente, anche professionale, degli ottimi suggerimenti e spunti per una migliore traduzione.
  • In merito all'utilizzabilità del sito ELINGUE su tablet e cellulari a standard iOs, Android, Windows Phone e Blackberry facciamo notare che l'assenza di standard comuni si ripercuote a volte sulla fruibilità di certe prestazioni tipiche del nostro sito (come il servizio ReadSpeaker e la traduzione automatica con Google Translate). Mentre da parte nostra è costante lo sforzo di rendere sempre più compatibili il nostro sito con il maggior numero di piattaforme mobili, non possiamo però assicurare il pieno raggiungimento di questo obiettivo in quanto non dipende solo da noi. Chi desidera abbonarsi è dunque pregato di verificare prima di perfezionare l'abbonamento la compatibilità del nostro sito con i suoi dispositivi informatici, mobili e non, utilizzando le pagine di esempio che riproducono una pagina tipo per ogni tipologia di risorsa presente sul nostro sito. Non saranno quindi accettati reclami da parte di utenti che, non avendo effettuato queste prove, si trovino poi a non avere un servizio corrispondente a quello sperato. In tutti i casi, facciamo presente che utilizzando browser come Chrome e Safari su pc non mobili (desktop o laptop tradizionali) si ha la massima compatibilità e che il tempo gioca a nostro favore in quanto mano a mano tutti i grandi produttori di browser e di piattaforme mobili stanno convergendo, ognuno alla propria velocità, verso standard comuni.
  • Il sito ELINGUE, diversamente da English Gratis che vive anche di pubblicità, persegue l'obiettivo di limitare o non avere affatto pubblicità sulle proprie pagine in modo da garantire a chi studia l'assenza di distrazioni. Le uniche eccezioni sono 1) la promozione di alcuni prodotti linguistici realizzati e/o garantiti da noi 2) le pubblicità incorporate dai siti di sharing direttamente nelle risorse embeddate che non siamo in grado di escludere 3) le pubblicità eventualmente presenti nei box e player che servono ad erogare i servizi linguistici interattivi prima citati (Google, Microsoft, ReadSpeaker, Babylon ecc.).
  • Per quanto riguarda le problematiche della privacy, non effettuiamo alcun tracciamento dell'attività dell'utente sul nostro sito neppure a fini statistici. Tuttavia non possiamo escludere che le aziende esterne che ci offrono i loro servizi o le loro risorse in modalità sharing effettuino delle operazioni volte a tracciare le attività dell'utente sul nostro sito. Consigliamo quindi all'utente di utilizzare browser che consentano la disattivazione in blocco dei tracciamenti o l'inserimento di apposite estensioni di browser come Ghostery che consentono all'utente di bloccare direttamente sui browser ogni agente di tracciamento.
  • Le risposte agli utenti nella sezione di commenti sociali DISQUS sono fornite all'interno di precisi limiti di accettabilità dei quesiti posti dall'utente. Questi limiti hanno lo scopo di evitare che il servizio possa essere "abusato" attraverso la raccolta e sottoposizione alla redazione di ELINGUE di centinaia o migliaia di quesiti che intaserebbero il lavoro della redazione. Si prega pertanto l'utente di leggere attentamente e comprendere le seguenti limitazioni d'uso del servizio:
    - il servizio è moderato per garantire che non vengano pubblicati contenuti fuori tema o inadatti all'ambiente di studio online
    - la redazione di ELINGUE si riserva il diritto di editare gli interventi degli utenti per correzioni ortografiche e per chiarezza
    - il servizio è erogato solo agli utenti abbonati registrati gratuitamente al servizio di commenti sociali DISQUS
    - l'utente non può formulare più di un quesito al giorno
    - un quesito non può contenere, salvo eccezioni, più di una domanda
    - un utente non può assumere più nomi, identità o account di Disqus per superare i limiti suddetti
    - nell'ambito del servizio non sono forniti servizi di traduzione
    - la redazione di ELINGUE gestisce la priorità delle risposte in modo insindacabile da parte dell'utente
    - in tutti i casi, la redazione di ELINGUE è libera in qualsiasi momento di de-registrare temporaneamente l'utente abbonato dal
      servizio DISQUS qualora sussistano fondati motivi a suo insindacabile giudizio. La misura verrà comunque attuata solo in casi di
      eccezionale gravità.
  • L'utente, inoltre, accetta di tenere Casiraghi Jones Publishing SRL indenne da qualsiasi tipo di responsabilità per l'uso - ed eventuali conseguenze di esso - delle informazioni linguistiche e grammaticali contenute sul sito, in particolare, nella sezione Disqus. Le nostre risposte grammaticali sono infatti improntate ad un criterio di praticità e pragmaticità che a volte è in conflitto con la rigidità delle regole "ufficiali" che tendono a proporre un inglese schematico e semplificato dimenticando la ricchezza e variabilità della lingua reale. Anche l'occasionale difformità tra le soluzioni degli esercizi e le regole grammaticali fornite nella grammatica va concepita come stimolo a formulare domande alla redazione onde poter spiegare più nei dettagli le particolarità della lingua inglese che non possono essere racchiuse in un'opera grammaticale di carattere meramente introduttivo come la nostra grammatica online.

    ELINGUE è un sito di Casiraghi Jones Publishing SRL
    Piazzale Cadorna 10 - 20123 Milano - Italia
    Tel. 02-36553040 - Fax 02-3535258 email: robertocasiraghi@iol.it 
    Iscritta al Registro Imprese di MILANO - C.F. e PARTITA IVA: 11603360154
    Iscritta al R.E.A. di al n. 1478561 • Capitale Sociale Euro 10.400,00 interamente versato