WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Atomic force microscope
  2. Atomic nanoscope
  3. Atom probe
  4. Ballistic conduction
  5. Bingel reaction
  6. Biomimetic
  7. Bio-nano generator
  8. Bionanotechnology
  9. Break junction
  10. Brownian motor
  11. Bulk micromachining
  12. Cantilever
  13. Carbon nanotube
  14. Carbyne
  15. CeNTech
  16. Chemical Compound Microarray
  17. Cluster
  18. Colloid
  19. Comb drive
  20. Computronium
  21. Coulomb blockade
  22. Diamondoids
  23. Dielectrophoresis
  24. Dip Pen Nanolithography
  25. DNA machine
  26. Ecophagy
  27. Electrochemical scanning tunneling microscope
  28. Electron beam lithography
  29. Electrospinning
  30. Engines of Creation
  31. Exponential assembly
  32. Femtotechnology
  33. Fermi point
  34. Fluctuation dissipation theorem
  35. Fluorescence interference contrast microscopy
  36. Fullerene
  37. Fungimol
  38. Gas cluster ion beam
  39. Grey goo
  40. Hacking Matter
  41. History of nanotechnology
  42. Hydrogen microsensor
  43. Inorganic nanotube
  44. Ion-beam sculpting
  45. Kelvin probe force microscope
  46. Lab-on-a-chip
  47. Langmuir-Blodgett film
  48. LifeChips
  49. List of nanoengineering topics
  50. List of nanotechnology applications
  51. List of nanotechnology topics
  52. Lotus effect
  53. Magnetic force microscope
  54. Magnetic resonance force microscopy
  55. Mechanochemistry
  56. Mechanosynthesis
  57. MEMS thermal actuator
  58. Mesotechnology
  59. Micro Contact Printing
  60. Microelectromechanical systems
  61. Microfluidics
  62. Micromachinery
  63. Molecular assembler
  64. Molecular engineering
  65. Molecular logic gate
  66. Molecular manufacturing
  67. Molecular motors
  68. Molecular recognition
  69. Molecule
  70. Nano-abacus
  71. Nanoart
  72. Nanobiotechnology
  73. Nanocar
  74. Nanochemistry
  75. Nanocomputer
  76. Nanocrystal
  77. Nanocrystalline silicon
  78. Nanocrystal solar cell
  79. Nanoelectrochemistry
  80. Nanoelectrode
  81. Nanoelectromechanical systems
  82. Nanoelectronics
  83. Nano-emissive display
  84. Nanoengineering
  85. Nanoethics
  86. Nanofactory
  87. Nanoimprint lithography
  88. Nanoionics
  89. Nanolithography
  90. Nanomanufacturing
  91. Nanomaterial based catalyst
  92. Nanomedicine
  93. Nanomorph
  94. Nanomotor
  95. Nano-optics
  96. Nanoparticle
  97. Nanoparticle tracking analysis
  98. Nanophotonics
  99. Nanopore
  100. Nanoprobe
  101. Nanoring
  102. Nanorobot
  103. Nanorod
  104. Nanoscale
  105. Nano-Science Center
  106. Nanosensor
  107. Nanoshell
  108. Nanosight
  109. Nanosocialism
  110. Nanostructure
  111. Nanotechnology
  112. Nanotechnology education
  113. Nanotechnology in fiction
  114. Nanotoxicity
  115. Nanotube
  116. Nanovid microscopy
  117. Nanowire
  118. National Nanotechnology Initiative
  119. Neowater
  120. Niemeyer-Dolan technique
  121. Ormosil
  122. Photolithography
  123. Picotechnology
  124. Programmable matter
  125. Quantum dot
  126. Quantum heterostructure
  127. Quantum point contact
  128. Quantum solvent
  129. Quantum well
  130. Quantum wire
  131. Richard Feynman
  132. Royal Society's nanotech report
  133. Scanning gate microscopy
  134. Scanning probe lithography
  135. Scanning probe microscopy
  136. Scanning tunneling microscope
  137. Scanning voltage microscopy
  138. Self-assembled monolayer
  139. Self-assembly
  140. Self reconfigurable
  141. Self-Reconfiguring Modular Robotics
  142. Self-replication
  143. Smart dust
  144. Smart material
  145. Soft lithography
  146. Spent nuclear fuel
  147. Spin polarized scanning tunneling microscopy
  148. Stone Wales defect
  149. Supramolecular assembly
  150. Supramolecular chemistry
  151. Supramolecular electronics
  152. Surface micromachining
  153. Surface plasmon resonance
  154. Synthetic molecular motors
  155. Synthetic setae
  156. Tapping AFM
  157. There's Plenty of Room at the Bottom
  158. Transfersome
  159. Utility fog

 



NANOTECHNOLOGY
This article is from:
http://en.wikipedia.org/wiki/Supramolecular_electronics

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Supramolecular electronics

From Wikipedia, the free encyclopedia

 

Supramolecular electronics is the experimental field of supramolecular chemistry that bridges the gap between molecular electronics and bulk plastics in the construction of electronic circuitry at the nanoscale 1. In supramolecular electronics, assemblies of pi-conjugated systems on the 5 to 100 nanometer length scale are prepared by self-assembly with the aim to fit these structures between electrodes. With single-molecules as researched in molecular electronics at the 5 nanometer scale this would be impractical. Nanofibers can be prepared from polymers such as polyaniline and polyacetylene 12. Chiral oligo(p-phenylenevinylene)s self-assemble in a controlled fashion into (helical) wires 3.

Hexa-benzopericoronene self assembly

Hexa-benzopericoronenes are members of the coronene family and are known to self-assemble into a columnar phase. One derivative in particular forms nanotubes with interesting electrical properties 4. The columnar phase in this compound further organises itself into sheets which ultimately roll up like a carpet to form multi-walled nanotubes with an outer diameter of 20 nanometer and a wall thickness of 3 nanometer. In this geometry the stacks of coronene disks are aligned with the length of the tube. The nanotubes have sufficient length to fit between two platinum nanogap electrodes produced by scanning probe nanofabrication and are 180 nanometer apart. The nanotubes as such are insulating but after one-electron oxidation with nitrosonium tetrafluoroborate (NOBF4) they conduct electricity.

Organic synthesis of this compound starts with an Aldol condensation reaction of an acetone derivative with a benzil derivative to substituted cyclopentadienone. This compound is reacted with an alkyne in a Diels-Alder reaction and subsequent expulsion of carbon monoxide to the hexaphenylbenzene which is oxidized by Iron(III) chloride in nitromethane
Organic synthesis of this compound starts with an Aldol condensation reaction of an acetone derivative with a benzil derivative to substituted cyclopentadienone. This compound is reacted with an alkyne in a Diels-Alder reaction and subsequent expulsion of carbon monoxide to the hexaphenylbenzene which is oxidized by Iron(III) chloride in nitromethane


 

References

  • 1 Chemistry: Material marriage in electronics E. W. Meijer, Albert P. H. J. Schenning Nature 419, 353-354 (26 Sep 2002)
  • 2 Supramolecular electronics; nanowires from self-assembled -conjugated systems A. P. H. J. Schenning and E. W. Meijer Chemical Communications, 2005, (26), 3245 - 3258 Abstract
  • 3 Towards supramolecular electronics A.P.H.J. Schenning et al. Synthetic Metals 147 (2004) 43–48 Article
  • 4 Self–Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube Jonathan P. Hill, Wusong Jin, Atsuko Kosaka, Takanori Fukushima, Hideki Ichihara, Takeshi Shimomura, Kohzo Ito, Tomihiro Hashizume, Noriyuki Ishii, Takuzo Aida Science 4 June 2004; 304: 1481-1483 Experimental Details
Retrieved from "http://en.wikipedia.org/wiki/Supramolecular_electronics"