WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Atomic force microscope
  2. Atomic nanoscope
  3. Atom probe
  4. Ballistic conduction
  5. Bingel reaction
  6. Biomimetic
  7. Bio-nano generator
  8. Bionanotechnology
  9. Break junction
  10. Brownian motor
  11. Bulk micromachining
  12. Cantilever
  13. Carbon nanotube
  14. Carbyne
  15. CeNTech
  16. Chemical Compound Microarray
  17. Cluster
  18. Colloid
  19. Comb drive
  20. Computronium
  21. Coulomb blockade
  22. Diamondoids
  23. Dielectrophoresis
  24. Dip Pen Nanolithography
  25. DNA machine
  26. Ecophagy
  27. Electrochemical scanning tunneling microscope
  28. Electron beam lithography
  29. Electrospinning
  30. Engines of Creation
  31. Exponential assembly
  32. Femtotechnology
  33. Fermi point
  34. Fluctuation dissipation theorem
  35. Fluorescence interference contrast microscopy
  36. Fullerene
  37. Fungimol
  38. Gas cluster ion beam
  39. Grey goo
  40. Hacking Matter
  41. History of nanotechnology
  42. Hydrogen microsensor
  43. Inorganic nanotube
  44. Ion-beam sculpting
  45. Kelvin probe force microscope
  46. Lab-on-a-chip
  47. Langmuir-Blodgett film
  48. LifeChips
  49. List of nanoengineering topics
  50. List of nanotechnology applications
  51. List of nanotechnology topics
  52. Lotus effect
  53. Magnetic force microscope
  54. Magnetic resonance force microscopy
  55. Mechanochemistry
  56. Mechanosynthesis
  57. MEMS thermal actuator
  58. Mesotechnology
  59. Micro Contact Printing
  60. Microelectromechanical systems
  61. Microfluidics
  62. Micromachinery
  63. Molecular assembler
  64. Molecular engineering
  65. Molecular logic gate
  66. Molecular manufacturing
  67. Molecular motors
  68. Molecular recognition
  69. Molecule
  70. Nano-abacus
  71. Nanoart
  72. Nanobiotechnology
  73. Nanocar
  74. Nanochemistry
  75. Nanocomputer
  76. Nanocrystal
  77. Nanocrystalline silicon
  78. Nanocrystal solar cell
  79. Nanoelectrochemistry
  80. Nanoelectrode
  81. Nanoelectromechanical systems
  82. Nanoelectronics
  83. Nano-emissive display
  84. Nanoengineering
  85. Nanoethics
  86. Nanofactory
  87. Nanoimprint lithography
  88. Nanoionics
  89. Nanolithography
  90. Nanomanufacturing
  91. Nanomaterial based catalyst
  92. Nanomedicine
  93. Nanomorph
  94. Nanomotor
  95. Nano-optics
  96. Nanoparticle
  97. Nanoparticle tracking analysis
  98. Nanophotonics
  99. Nanopore
  100. Nanoprobe
  101. Nanoring
  102. Nanorobot
  103. Nanorod
  104. Nanoscale
  105. Nano-Science Center
  106. Nanosensor
  107. Nanoshell
  108. Nanosight
  109. Nanosocialism
  110. Nanostructure
  111. Nanotechnology
  112. Nanotechnology education
  113. Nanotechnology in fiction
  114. Nanotoxicity
  115. Nanotube
  116. Nanovid microscopy
  117. Nanowire
  118. National Nanotechnology Initiative
  119. Neowater
  120. Niemeyer-Dolan technique
  121. Ormosil
  122. Photolithography
  123. Picotechnology
  124. Programmable matter
  125. Quantum dot
  126. Quantum heterostructure
  127. Quantum point contact
  128. Quantum solvent
  129. Quantum well
  130. Quantum wire
  131. Richard Feynman
  132. Royal Society's nanotech report
  133. Scanning gate microscopy
  134. Scanning probe lithography
  135. Scanning probe microscopy
  136. Scanning tunneling microscope
  137. Scanning voltage microscopy
  138. Self-assembled monolayer
  139. Self-assembly
  140. Self reconfigurable
  141. Self-Reconfiguring Modular Robotics
  142. Self-replication
  143. Smart dust
  144. Smart material
  145. Soft lithography
  146. Spent nuclear fuel
  147. Spin polarized scanning tunneling microscopy
  148. Stone Wales defect
  149. Supramolecular assembly
  150. Supramolecular chemistry
  151. Supramolecular electronics
  152. Surface micromachining
  153. Surface plasmon resonance
  154. Synthetic molecular motors
  155. Synthetic setae
  156. Tapping AFM
  157. There's Plenty of Room at the Bottom
  158. Transfersome
  159. Utility fog

 



NANOTECHNOLOGY
This article is from:
http://en.wikipedia.org/wiki/Smart_dust

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Smartdust

From Wikipedia, the free encyclopedia

(Redirected from Smart dust)

Smartdust is a hypothetical network of tiny wireless microelectromechanical systems (MEMS) sensors, robots, or devices, installed with wireless communications, that can detect anything from light and temperature, to vibrations, etc.

Design and engineering

The devices, or motes, are intended to be the size of a grain of sand, or even a dust particle.

When clustered together, they would automatically create highly flexible, low-power networks with applications ranging from climate control systems to entertainment devices that interact with information appliances.

The smartdust concept was introduced by Kristofer Pister (University of California) in 2001 [1], though similar ideas existed in science fiction before then. A recent review [2] discusses various techniques to take smartdust in sensor networks beyond millimeter dimensions to the micrometre level.

Applications

A typical application scenario is scattering a hundred of these sensors around a building or around a hospital to monitor temperature or humidity, track patient movements, or inform of disasters, such as earthquakes. In the military, they can perform as a remote sensor chip to track enemy movements, detect poisonous gas or radioactivity. The ease and low cost of such applications have raised privacy concerns, primarily in science fiction stories.

Beyond such demonstrations lies an emerging world of very large networks that combine motes and portable gear with larger technologies to improve the depth, duration and range of monitoring. The $200 million EarthScope project of the science foundation is erecting 3,000 stations that are to track faint tremors, measure crustal deformation and make three-dimensional maps of the earth's interior from crust to core. Some 2,000 more instruments are to be mobile — wireless and sun- or wind-powered — and 400 devices are to move east in a wave from California across the nation over the course of a decade. The goal is to uncover the secrets of how the continent formed and evolved, revolutionizing the study of volcanoes, fault systems, mineral deposits and earthquakes. Begun in 2003, EarthScope is to be completed by 2008 and run until 2023.

—William J. Broad, A Web of Sensors, Taking Earth's Pulse (New York Times)

Consider also that Smart Dust was derived from an earlier concept called Smart Matter, that was conceived at the Palo Alto Research Center.

See also

  • Nanotechnology
  • TinyOS
  • Localizer
  • Mesh networking
  • Wireless Sensor Network
  • Utility fog

External links and references

  •   Smart Dust: Communicating with a Cubic-Millimeter Brett Warneke, Matt Last, Brian Liebowitz, and Kristofer S.J. Pister, Computer, vol. 34, pp. 44-51, 2001
  •   Smart dust: nanostructured devices in a grain of sand, Michael J. Sailor and Jamie R. Link, Chemical Communications, vol. 11, p. 1375, 2005
  • How stuff works: motes
  • "Smart Dust" May Soon Be Watching You
  • Open source mote designs and TinyOS operating system from UC Berkeley
  • UC Berkeley Smart Dust Project
  • Sailor research group at UCSD
  • Web of Sensors "In the wilds of the San Jacinto Mountains, along a steep canyon, scientists are turning 30 acres [121,000 m˛] of pines and hardwoods in California into a futuristic vision of environmental study. They are linking up more than 100 tiny sensors, robots, cameras and computers, which are beginning to paint an unusually detailed portrait of this lush world, home to more than 30 rare and endangered species. Much of the instrumentation is wireless. Devices the size of a deck of cards — known as motes, after dust motes..."
Retrieved from "http://en.wikipedia.org/wiki/Smartdust"