WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
NATURE
- Animals

- Fruits And Vegetables

ARTICLES IN THE BOOK

MUSICAL NOTATION
http://en.wikipedia.org/wiki/Numerical_sight-singing

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License

# Numerical sight-singing

An alternative to the solfege system of sight-singing, this musical notation system numbers the diatonic scale with the numbers one through eight (or, alternately, one to seven, with the octave again being one).

In this system, 1 is always the root or origin, but the scale being represented may be major, minor, or any of the diatonic mode. Accidentals (sharps and flats outside the key signature) are noted with a + or - when the numbers are written, but are often skipped when they are spoken or sung.

In some pedagogies involving numerical sight-singing notation students are not taught to modify vowels to represent sharp or flat notes. In these cases the students usually name the note and whether it is flat or sharp. For example, an augmented unison ("ouey") might be called "one sharp," and in some other pedagogies this same pitch may also simply be called "one."

There is a continual debate about the merits of this system as compared to solfege: it holds the advantage that when dealing with abstract concepts such as interval distance a student may easily recognize that the distance between 1 to 5 is larger than the distance between 1 to 4 because of the numerical values assigned (as compared to Solfege, where comparing Do to Sol and Do to Fa remain completely abstract until sung or played). A drawback often pointed out is that numerical numbers are not always "singable," for example, scale degree 7 (ti, in solfege) contains vowels that are hard to tune.

Numerical sight singing is not the same as integer notation derived from musical set theory and used primarily for sight singing atonal music. Nor is it the same as rhythmic numerical singing, a technique popularized by Robert Shaw in which the numbers sang represent the rhythms of a piece in accordance with the beat of a measure.