WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Atomic force microscope
  2. Atomic nanoscope
  3. Atom probe
  4. Ballistic conduction
  5. Bingel reaction
  6. Biomimetic
  7. Bio-nano generator
  8. Bionanotechnology
  9. Break junction
  10. Brownian motor
  11. Bulk micromachining
  12. Cantilever
  13. Carbon nanotube
  14. Carbyne
  15. CeNTech
  16. Chemical Compound Microarray
  17. Cluster
  18. Colloid
  19. Comb drive
  20. Computronium
  21. Coulomb blockade
  22. Diamondoids
  23. Dielectrophoresis
  24. Dip Pen Nanolithography
  25. DNA machine
  26. Ecophagy
  27. Electrochemical scanning tunneling microscope
  28. Electron beam lithography
  29. Electrospinning
  30. Engines of Creation
  31. Exponential assembly
  32. Femtotechnology
  33. Fermi point
  34. Fluctuation dissipation theorem
  35. Fluorescence interference contrast microscopy
  36. Fullerene
  37. Fungimol
  38. Gas cluster ion beam
  39. Grey goo
  40. Hacking Matter
  41. History of nanotechnology
  42. Hydrogen microsensor
  43. Inorganic nanotube
  44. Ion-beam sculpting
  45. Kelvin probe force microscope
  46. Lab-on-a-chip
  47. Langmuir-Blodgett film
  48. LifeChips
  49. List of nanoengineering topics
  50. List of nanotechnology applications
  51. List of nanotechnology topics
  52. Lotus effect
  53. Magnetic force microscope
  54. Magnetic resonance force microscopy
  55. Mechanochemistry
  56. Mechanosynthesis
  57. MEMS thermal actuator
  58. Mesotechnology
  59. Micro Contact Printing
  60. Microelectromechanical systems
  61. Microfluidics
  62. Micromachinery
  63. Molecular assembler
  64. Molecular engineering
  65. Molecular logic gate
  66. Molecular manufacturing
  67. Molecular motors
  68. Molecular recognition
  69. Molecule
  70. Nano-abacus
  71. Nanoart
  72. Nanobiotechnology
  73. Nanocar
  74. Nanochemistry
  75. Nanocomputer
  76. Nanocrystal
  77. Nanocrystalline silicon
  78. Nanocrystal solar cell
  79. Nanoelectrochemistry
  80. Nanoelectrode
  81. Nanoelectromechanical systems
  82. Nanoelectronics
  83. Nano-emissive display
  84. Nanoengineering
  85. Nanoethics
  86. Nanofactory
  87. Nanoimprint lithography
  88. Nanoionics
  89. Nanolithography
  90. Nanomanufacturing
  91. Nanomaterial based catalyst
  92. Nanomedicine
  93. Nanomorph
  94. Nanomotor
  95. Nano-optics
  96. Nanoparticle
  97. Nanoparticle tracking analysis
  98. Nanophotonics
  99. Nanopore
  100. Nanoprobe
  101. Nanoring
  102. Nanorobot
  103. Nanorod
  104. Nanoscale
  105. Nano-Science Center
  106. Nanosensor
  107. Nanoshell
  108. Nanosight
  109. Nanosocialism
  110. Nanostructure
  111. Nanotechnology
  112. Nanotechnology education
  113. Nanotechnology in fiction
  114. Nanotoxicity
  115. Nanotube
  116. Nanovid microscopy
  117. Nanowire
  118. National Nanotechnology Initiative
  119. Neowater
  120. Niemeyer-Dolan technique
  121. Ormosil
  122. Photolithography
  123. Picotechnology
  124. Programmable matter
  125. Quantum dot
  126. Quantum heterostructure
  127. Quantum point contact
  128. Quantum solvent
  129. Quantum well
  130. Quantum wire
  131. Richard Feynman
  132. Royal Society's nanotech report
  133. Scanning gate microscopy
  134. Scanning probe lithography
  135. Scanning probe microscopy
  136. Scanning tunneling microscope
  137. Scanning voltage microscopy
  138. Self-assembled monolayer
  139. Self-assembly
  140. Self reconfigurable
  141. Self-Reconfiguring Modular Robotics
  142. Self-replication
  143. Smart dust
  144. Smart material
  145. Soft lithography
  146. Spent nuclear fuel
  147. Spin polarized scanning tunneling microscopy
  148. Stone Wales defect
  149. Supramolecular assembly
  150. Supramolecular chemistry
  151. Supramolecular electronics
  152. Surface micromachining
  153. Surface plasmon resonance
  154. Synthetic molecular motors
  155. Synthetic setae
  156. Tapping AFM
  157. There's Plenty of Room at the Bottom
  158. Transfersome
  159. Utility fog

 



NANOTECHNOLOGY
This article is from:
http://en.wikipedia.org/wiki/Nanolithography

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Nanolithography

From Wikipedia, the free encyclopedia

 

Nanolithography — or lithography at the nanometer scale — refers to the fabrication of nanometer-scale structures, meaning patterns with at least one lateral dimension between the size of an individual atom and approximately 100 nm. Nanolithography is used during the fabrication of leading-edge semiconductor integrated circuits or nanoelectromechanical systems (NEMS).

As of 2006, nanolithography is a very active area of research in academia and in industry.

Optical lithography

Optical lithography, which has been the predominant patterning technique since the advent of the semiconductor age, is capable of producing sub-100-nm patterns with the use of very short wavelengths (currently 193 nm). Optical lithography will require the use of liquid immersion and a host of photomask enhancement technologies (phase-shift masks (PSM), optical proximity correction (OPC)) at the 32 nm node. Most experts feel that traditional optical lithography techniques will not be cost effective below 30 nm. At that point, it may be replaced by a next-generation lithography (NGL) technique.

Other nanolithography techniques

  • The most common nanolithographic technique is Electron-Beam Direct-Write Lithography (EBDW), the use of a beam of electrons to produce a pattern — typically in a polymeric resist such as PMMA.
  • Extreme Ultraviolet Lithography (EUV) is a form of optical lithography using ultrashort wavelengths (13.5 nm). It is the most popularly considered NGL technique.
  • Charged-particle lithography, such as ion- or electron-projection lithographies (PREVAIL, SCALPEL, LEEPL), are also capable of very-high-resolution patterning.
  • Nanoimprint lithography (NIL), and its variants, such as Step-and-Flash Imprint Lithography, LISA and LADI are promising nanopattern replication technologies. This technique can be combined with contact printing.
  • Scanning Probe Lithographies (SPL) are promising tools for patterning at the deep nanometer-scale. For example, individual atoms may be manipulated using the tip of a Scanning Tunneling Microscope (STM). Dip-Pen Nanolithography (DPN) is the first commercially available SPL technology based on Atomic Force Microscopy.
  • The furthest developed NGL remains X-ray lithography which is extensible to 15 nm resolution by use of "demagnification" in the Near Field.
  • Chemomechanical Surface Patterning using an Atomic Force Microscope is another type of Nanolithography. [1]

Bottom-up Methods

It is possible that self-assembly methods will take over as the primary nanolithography approach, due to ever-increasing complexity of the top-down approaches listed above. Self-assembly of dense lines less than 20 nm wide in large pre-patterned trenches has been demonstrated (see e.g., D. Sundrani et. al., Langmuir, vol. 20, 5091-5099 (2004)). The degree of dimension and orientation control as well as prevention of lamella merging still need to be addressed for this to be an effective patterning technique. The important issue of line edge roughness is also highlighted by this technique.


 

See also

  • Nanoimprint Lithography
  • Contact printing
  • Nanofabrication
  • Nanopatterning
  • Photolithography
  • Soft lithography
  • Liquid imaging
  • LIGA

References

  1. ^ R. C. Davis et. al., Chemomechanical Surface Patterning and Functionalization of Silicon Surfaces Using an Atomic Force Microscope, Appl. Phys. Lett. 82 (5): 808-810 (2003). Related article

External links

  • Nanometer Pattern Generation System (NPGS)
  • Latest News and Research Articles in Nanotechnology
  • Nanonex
  • Molecular Imprints
  • EV Group
  • Commercialization of Nano Imprint Lithography (NIL)
  • Obducat
  • NanoInk
  • Raith
  • JMAR
  • JENOPTIK Mikrotechnik
  • Sandia National Lab — EUV
  • IBM Researchers Develop 29.9 nm Chip-Manufacturing Process
  • Sub-30nm pitch self-assembly assisted by large trenches
  • Nanolithography at Georgia Tech
Retrieved from "http://en.wikipedia.org/wiki/Nanolithography"